
© Larry Snyder, 2000 All rights reserved

A Common Framework for Memory
Hierarchies

Caching, paged virtual memory and TLBs
all use the same underlying concepts

Feature Cache Paged Mem TLB

Size,Blocks 1K-100K 2K-250K 32-4000
Size, Bytes 8KB-8MB 8MB-8GB 128B-8000B
Blk Size, B 4-256 4KB-64KB 4-32
Miss Penalty 10-100clk 1M-10Mclk 10-100clk
Miss Rate 0.1%-10% 10^-4-10^-5% 0.01%-2%

© Larry Snyder, 2000 All rights reserved

Four Questions for Classification

• Where can a block be placed? Block placement
– direct mapped, set associative, fully associative

• How is a block found? Block identifcation
– indexing, set search, separate lookup table

• What block is replaced on a miss? Block replacement
– LRU, Random, FIFO, MRU

• How are writes handled? Write strategy
– write through or write back

Summary and Review

© Larry Snyder, 2000 All rights reserved

Block Placement
The extremes of cache mapping -- direct mapped and

fully associative are end points on a spectrum

Blocks are assigned to a cache by directly indexing any
of its n sets and matching any of the m entries of the
set associatively by the tag

Indexing is "block number modulo number of sets"

01234567 01234567 01234567

Direct Mapped 4-WaySet Associative Fully Associative

TAG OFFSETINDEX

© Larry Snyder, 2000 All rights reserved

Block Identification
Placement of a block whose address is 12 varies

for direct, set associative, and fully associative

Tag Data

0
1
2
3
4
5
6
7

Tag DataTag Data

0
1

Tag DataTag Data

Tag DataTag Data Tag DataTag Data Tag DataTag Data Tag DataTag Data

Directed
Mapped

4-Way Set Associative

Fully Associative
0 1 2 3 4 5 6 7

0 1 2 3

12 MOD 8 =

12 MOD 2 =

© Larry Snyder, 2000 All rights reserved

Block Replacement
• Replacement candidates are --

– Any block in a fully associative cache
– Any block of a set in set associative caches

– The indexed block for direct mapped

• Replacement strategies --
– Opt is best, but impossible
– Least Recently Used (LRU) approximates Opt. Expensive

– Random is easy, but impossible for software management

• For 2-way s.a., random has 1.1 times higher miss rate
than LRU

• "Use" bit can approximate LRU

© Larry Snyder, 2000 All rights reserved

Write Strategy
• Write through simultaneously updates the cache and

the lower level in the memory hierarchy on each write.
• Write back only updates the cache copy until the block

is replaced, at which point the next lower level of the
hierarchy is updated.

• Write through advantages --
– Read misses are cheaper due to not waiting for write. Easier

to implement, though it needs a write buffer.

• Write back advantages --
– Multiple writes to a block require only one memory write.

– Can utilize wider channel to lower level memory.

• Write back is always needed between memory & disk.
– Dirty bit in page table determines if write back needed.

© Larry Snyder, 2000 All rights reserved

Mapping Choices in Hierarchy

• Tradeoff cost of miss vs cost of associativity
• VM uses fully associative mapping

– Reduces miss rate, because miss penalty is high
– Mapping done in software

– Large page size means page table size overhead is small

– Note that page table is indexed, but full map provides fully
associative placement

• Small caches (TLB) often use set associative
placement

• Large caches never use fully associative placement
– High cost and hit time penalties

– Small performance advantage to set associative

© Larry Snyder, 2000 All rights reserved

The Three Cs

Missing in the cache can be caused by three
different circumstances:

• Compulsory misses -- miss on first access
• Capacity misses -- miss due to cache not having

enough blocks
• Conflict misses -- miss due to cache

organization

In cache design, larger is always better ... but
there are always trade-offs

Miss Rates

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

2K 4K 8K 16K 32K 64K 128K

Compulsory
Capacity

Conflict 1-way

Conflict 2-way

Conflict 4-way

Conflict 8-way

© Larry Snyder, 2000 All rights reserved

The Problem with Miss-rate

It doesn’t tell the whole story:
Consider increasing direct-mapped cache from 32K to 64K
Miss Rate drops from 5% to 4%. If the larger cache implies a cycle

time of 18ns and the smaller cache implies a cycle time of 15ns,
the smaller cache machine has better performance

Postulate: CPI w/o stalls is unchanged
Miss penalty 180ns
Memory references per instruction = 1.5

CPU Time = (CPU execution clock cycles + Memory-stall clock
cycles) × Clock cycle time

© Larry Snyder, 2000 All rights reserved

Cache Analysis, Continued

Memory-stall clock cycles = Instructions × Misses × Miss penalty
 Program Instruction

Misses = Instruction miss rate + Data miss rate × Data references
Instructions

Smaller Cache Larger Cache
Memory stall clock cycles =
 IC × (0.05 + 0.05 × 0.5) ×
 Absolute miss penalty
 Clockcycle time
= IC × 0.075 × 180/15 = .9IC

Let IC be instructions per program

Memory stall clock cycles =
 IC × (0.04 + 0.04 × 0.5) ×
 Absolute miss penalty
 Clockcycle time
= IC × 0.06 × 180/18 = .6IC

© Larry Snyder, 2000 All rights reserved

Cache Analysis, Continued
Memory-stall clock cycles = 0.9IC (Small) and 0.6IC (Large cache).

Substituting into the CPU time equation, letting CPI w/o stalls be C:

CPU Time = (CPU execution clock cycles + Memory-stalls clock cycles)
× Clock cycle time

Small Cache Large Cache

CPU time
=((C × IC) + (0.9 × IC) × 15ns
= 15×C×IC + 13.5 × IC
= (15C + 13.5)IC

CPU time
=((C × IC) + (0.6 × IC) × 18ns
= 18×C×IC + 10.8 × IC
= (18C + 10.8)IC

For C ≥ 1 the smaller cache is better

