
© Larry Snyder, 2000 All rights reserved

Virtual Memory

Virtual Memory is the process of mapping a logical
address space numbered from 0 to the physical
address space of the computer so that the RAM

serves as a cache for the program’s memory stored
 on the disk. The mapping is performed on a page basis.

© Larry Snyder, 2000 All rights reserved

Virtual Memory

Virtual memory solves several critical problems:

Simplifying RAM memory management by separating
the address of memory from its physical location

Providing protection for users by giving them their
own address spaces

Simplifying compilation and usage of libraries by
allowing all programs to begin addressing memory
from zero

© Larry Snyder, 2000 All rights reserved

Virtual to Physical Translation
Physical memory (RAM) is divided into pages --

contiguous sequences of memory typically in the 4KB
-- 16KB range

The pages are blocks of a fully associative cache for the
memory of the program which is stored in the next
lower level of the memory hierarchy (disk)

Translation

Virtual Page Number Page Offset

Physical Page Number

31 30 29 12 11 2 1 0

29 28 27

Physical Address

Virtual Address

12 11
Page Offset

2 1 0

© Larry Snyder, 2000 All rights reserved

Page Table

Page table and disk addresses may be kept in separate tables

Page Table
1
1
0
1
1
0
1
1
0
1

Layout in Physical MemoryV

© Larry Snyder, 2000 All rights reserved

VM Considerations

Large page sizes allow the huge miss penalties to be
amortized over many references

Avoiding premature page replacement, e.g. by address
collisions, extends page life and reduces fault rate ...
thus full associativity

Page faults can be handled in software, which can use
cleverness to reduce fault rate

Write back is needed because of the high cost of writes

© Larry Snyder, 2000 All rights reserved

Implementing Address Translation

20
V Physical page number

31 30 1 012 11

18

12

Virtual Address

29 28 1 012 11

Physical Address

Virtual Page Number Offset

OffsetPhysical Page Number

0 = fault

Pg Table Reg

Page
Table

Write Back
requires a
"dirty" bit

© Larry Snyder, 2000 All rights reserved

Exercise
Memory:

 Address Contents
000000ac Page Table Address: 0000e0a8
000000b0
000000b4

. . .
000080ac
000080b0
000080b4

. . .
0000e0ac 80000000
0000e0b0 8000000e
0000e0b4 8000a0b4

Q. Assuming 4K pages and "big-endian" addressing, i.e. the 0 byte of a word is the msb
end, what are the contents of the memory location at the virtual address 000020b7?

A. "0b7" is the page offset, and "00002" is the virtual page number. Convert this to a
displacement for the page table by multiplying by 4, and add to the page table address:
0000e0a8 + 8 = 0000e0b0". Find the physical page number at that location: 8000000e, where
the msb is the "valid bit". Construct the physical address: 0000e0b7. Find that byte in
memory: b4.

© Larry Snyder, 2000 All rights reserved

Page Replacement Strategy
When the Valid = 0, a page fault is signaled.

Some page must be replaced -- pick the page that will be used
furthest into the future: Opt

Replace the least recently used (LRU) page.

LRU strategies are effective, but expensive.

"Use" bits can be a decent approximation.

Space required for page tables can be substantial:

4K pages imply 20 bits of virtual address.

At x bytes per entry implies xMB for full page table.

Represent only the prefix of the table using base + extent.

Grow low addresses and high addresses separately by using the
msb to indicate which part of the VM space is being used.

