

Direct Mapped Cache (4 word blks)

Miss rate vs block size

Benefits of Multiword Blocks

Increasing block size improves performance, to a point
Larger blocks increase benefits of spatial locality
Larger blocks = fewer blocks for a given cache size = greater likelihood a useful block is flushed when another block is brought in (conflict misses)
Memory request techniques --
Early restart
Requested word first

Pgm	Wd	Inst Miss	Data Miss	Effective Miss Ratio
GCC	1	6.1%	2.1%	5.4%
	4	2.0%	1.7%	1.9%
Spice	1	1.2%	1.3%	1.2%
	4	0.3%	0.6%	0.4%

Writing vs Reading Cache

- Writing has two basic forms
- Write through
- Write back
- Since writing not on critical path, write buffers
- When an element is written, need it be kept in cache?
- Load on write ... especially of block > word

Reference Sequence

Memory Refs: 16, 24, 29, 25, 9, 26, 10, 16, 17, 18, 19

Alternative Designs

Possible arrangements for cache elements

Fully Associative; 8 Way Set-Associative

Set Associativity

Associativity

- 8-way is pretty much the upper limit except for TLB and memory
- Replacement policy
- Optimal -- a concept that is not realizable
- Least recently used (LRU)
- Random
- Pgm control

