Detecting and Handling Exceptions and
Interrupts

The datapath has to be prepared to
handle unusual situations -- it cannot
stop, but must keep going and
recover

© Larry Snyder, 2000, All rights reserved

Branch Hazard Detection Logic

D/EX

XIMEM

]
I

EA Computation Moved to ID . ‘ Fast Equality Test I

© Larry Snyder, 2000, All rights reserved




Dynamic Branch Prediction

Assuming that a branch is not taken is a crude form of prediction
— 1f 50% of branches are taken, we will be right 50% of the time

To do better than this, we can examine past behavior of the
branch to hint what will happen this time

We maintain a small branch prediction buffer or branch history
table

— The table is indexed by the low order bits of branch instruction
addresses (why not the high order bits?)

— Each entry is a single bit which tells us whether the branch
was taken

Improves accuracy to 80-90%

© Larry Snyder, 2000, All rights reserved

Repeating Ourselves

Loops cause problems with the previous scheme
The first and last iteration of a loop will be mispredicted

If the loop has been executed earlier, then the first time we
encounter the branch instruction, we will predict that it will not be
taken

On the final iteration, we will predict that the branch will be taken

To handle this case, we use more than 1 bit of state in our branch
prediction buffer

© Larry Snyder, 2000, All rights reserved




2-bit Prediction Scheme

Taken
Not taken
Predict taken ( Predict taken
Taken
Taken Not taken {
Not taken
Predict not taken Predict not taken

Taken

© Larry Snyder, 2000, All rights reserved

Delayed Branches

* Make the control hazard an architectural feature

» The instruction following a branch is always executed

» The compiler or assembler has to find an instruction to fill this slot
— If none can be found, a NOP has to be inserted

e The instructions scheduled into the delay slot must

— EITHER always be executed whether the branch is taken or
not

— OR have no side-effects

« Less popular now since longer pipelines and multiple instruction
issue mean the single delay slot does not help as much

« Dynamic predictors have increased in popularity as transistor
density has increased

© Larry Snyder, 2000, All rights reserved




Playing the Slots

a. From before b. From target

c. From fall through

add $s1, $s2, $s3 sub $t4, $t5, $t6

if $s2 = 0 then

Delay slot

add $s1, $s2, $s3

if $s1 = 0 then

Delay slot

add $s1, $s2, $s3

if $s1 =

Delay slot

sub $t4, $t5, $t6

0 then

add $s1, $s2, $s3

add $s1, $s2, $s3

if $s1 = O then

sub $t4, $t5, $t6

Becomes Becomes Becomes
add $s1, $s2, $s3
if $s2 = 0 then if $s1 = O then

sub $t4, $t5, $t6

© Larry Snyder, 2000, All rights reserved

Abstracting

Control |
Finite state
machine
representation
of datapath

Memory address
computation

ALUSIGA = 1
ALUSIcB = 00
ALUOp = 00

Memory
access

Memory
access

MemRead

MemWhite
lorD=1

lorD =1

Wiite-back step

RegWiite
=1

MemRead
ALUSrcA =0
loD=0

ALUSICA = 1
ALUSTcB = 00
ALUOp =10

Instruction fetch

Instruction decode/
Register fetch

ALUSIcA =0
ALUSIeB = 11
ALUOp = 00

ALUSICA = 1
ALUSIGB = 00
ALUOp = 01
PCWiteCond
PGCSource = 01

PCWite
PCSource = 10

R-type]

RegDst = 1
RegWhite
MemtoReg = 0

Circles list the control
signals for each state

RegDst =0

© Larry Snyder, 2000, All rights reserved




Unusual Conditions Arise ...

Classify the unusual things that can happen
» Exceptions -- unusual events that affect the
datapath, regardless of whether they are
internally or externally generated

* Interrupts -- externally generated events

Examples ...
* |/O device requests
* Invoke operating system from user program
 Arithmetic overflow
» Undefined instruction
* Errors

© Larry Snyder, 2000, All rights reserved

Detection

Instruction decode/

Instruction fetch Register fetch

ALUSIcA=0
ALUSrcB = 11
ALUOp =00

Start

Memory address
computation

ALUSrcA = 1
ALUSIcB = 00
ALUOp =10

ALUSrcB = 00
ALUOp = 01
PCWiiteCond

ALUSIcA = 1
ALUSIoB = 00
ALUOp =00

Memory
access

IntCause = 0
CauseWhite

ALUSrcA=0

NlemR_ead ALUSKcB =01 ALUSrcB = 01
lorD =1 ALUOp =01 ALUOp =01
EPCWirite EPCWhite

PCwrite
PCSource = 1

PCWrite
PCSource = 11,

1

Overflow

RegWiite

g=1
RegDst = 0

© Larry Snyder, 2000, All rights reserved




Exceptions in the Pipeline

» Handling exceptional conditions in the pipeline
is difficult ... multiple instructions are in
process, but execution must be stopped at a
coherent point

» The operating system will handle exceptions

* Two requirements ...

» Save the address of offending instruction in
EPC, exception program counter

» Transfer control to operating system

© Larry Snyder, 2000, All rights reserved

Keeping Track of What Happened

* The machine must tell the OS what happened

» A “cause register” or “exception flags” are bit
sequences that the processor sets indicating
errors

» “Vectored interrupts” allow the processor to
jump to different locations in the operating
system depending on the exceptional
condition

© Larry Snyder, 2000, All rights reserved




Add-ins for Exceptions

PCWiteCond CauseWrite
IntCause
EPCWrite.
PCSource
| ey
|_ALUSICE
ALUSIcA
RegWite
RegDst
Jump i
Instructon 25 0] 28 @2‘3 address [31 I 2:
left 2
- [31-26] FC [31-28]
M Instruction Read
u P Address 125 21] register 1
X
Memory Instruction Read  Read a
d 120 18] register 2 data 1 o Zer
MermD: ’ Registers ALU| ALUOL Erq
Instruction | Wiite ~ Read result
Wit 115 OIf ¥ instruction register  gata 2
i
e e Instruction | | 115 111 Wite
register data
Instruction 0 0 mtepf0
[15 0] M M
u u ] Cause
X %
Mermory U 1 m—t
data | ALY
register > oxtond control
Instruction [5 0]
© Larry Snyder, 2000, All rights reserved
l Branch
IF Flush D.Flush EXFlush

40000040

EXIMEM

M
[t Contr ek u MEMMB
[ o= | —
! EX) M
IFID Py

[

!

J
RegWie I

[

[

ALUSe

Mermiite

Shit
left 2

Read

R
register 1922 1

Data

at
Instruction oy

mermory

Read
register 2 =
Registers

MemtoReg

Address

Read|
data [~

register  Rea
Wit data 2|
ldata

e

Read —
data

it
data

xc=

\j\nwuchun [25 21] RegDst| | -——)
N 1

Instruction [20_16]
stucton[20 181,

Instruction [20 18] -] m
Instruction [15_11] 1 U
el ) :

unit

MemRead

© Larry Snyder, 2000, All rights reserved




