Q: What connects Seattle and Bellevue?

A: The Evergreen Floating Point Bridge.

Floating Point Arithmetic

Most scientific and engineering computations require "decimal" arithmetic, i.e. numbers containing a decimal point. Floating point is the computer implementation of "real" arithmetic with limited precision. Until recently, only the largest computers had floating point hardware as standard equipment.

Terminology

Scientific Notation: 3.1557 x 10⁹, 3.14.16 x 10⁰, 3.1557 x 10⁻⁹ Normalized Number: 31.557 x 10⁸ ---> 0.31557 x 10¹⁰

Decimal	Decimal Fractions								
0.1 ₁₀	1*10 ⁻¹								
0.44 ₁₀	44*10-2								
0.612 ₁₀	612*10-3								

Binary Fractions									
0.12	1*2-1	1/2							
0.012	1*2-2	1/4							
0.1012	5*2 ⁻³	5/8							

- General Form of Floating Point: 1.ffffffffff x 2eee
- Constituents are: sign, significand or mantissa and exponent

s exponent			mantissa																			
1 bit	8 bits													2	3 k	٦IT	3					

Further Floating Facts

Floating point is well understood: IEEE 754 FP Standard Single precision -- one word representation of fp Double precision -- two word representation of fp Range --

Single: 2.0 x 10⁻³⁸ through 2.0 x 10³⁸ Double: 2.0 x 10⁻³⁰⁸ through 2.0 x 10³⁰⁸

MSB of normalized mantissa not represented: 24, 53 bits Zero is represented as 000...0, i.e. it has no implied MSB FP has the property that when a
b as signed magnitude numbers then a
b as floating point numbers

Biased Representation

- Signed exponents would complicate comparisons
- In biased notation the most negative number is 000...0₂ and the most positive is 111...1₂
- Since the single precision exponent field is 8 bits, allowing 256 different configurations, the bias for sp fp is 127
 - +2 is presented as 2+127 = 129 = 1000 0001
 - -2 is represented as -2+127 = 125 = 0111 1101
- The bias for double precision is 1023
- The formula: (-1)^{sign*}(1+mantissa)*2^(exponent-bias)

Example Representations

- Find floating point for 5.125
 - $5.125 = 5 + 0.125 = 5 + 1/8 = 5 + 1*2^{-3}$
 - $= 101_2 + .001_2 = 101.001$
 - Normalize: 101.001₂*2⁰ ---> 1.01001*2²
 - Thus $5.125 = (-1)^{0*}1 + .0100 \ 1000 \ 0... * 2^{129}$

- In reverse, what floating point number is
 - (-1)^{1*}(1.0111 000 0...)*2¹³⁰
 - In binary scientific notation it is -1.0111*23
 - Reducing the exponent to 0 yields -1011.1₂
 - $\bullet = -(11_{10} + 2^{-1}) = -(11_{10} + 1/2) = -11.5_{10}$

Multiplying Floating Point Numbers

- Recall that fp is scientific notation, so arithmetic is logarithmic
 - Add the exponents (reduce by the bias), multiply the mantissas and renormalize if needed

```
0.75 x 24 = 0.11 x 11000

1.1x2<sup>-1</sup> times 1.1x2<sup>4</sup>

Add exponents: -1 + 4 = 3

Multiply fractions:

1.1

\frac{1.1}{1}

1 0.0 1

Result: 10.01x2<sup>3</sup> = 10010

or 1.001x2<sup>4</sup> normalized
```

```
0.75 x 24 = 0.11 x 11000

1.1x2<sup>126</sup> times 1.1x2<sup>131</sup>

Add exponents:

126+131 = 257-127 = 130

Multiply fractions:

1.1

1.1

1 1

1 0.0 1

Result: 10.01x2<sup>130</sup> = 1.001x2<sup>131</sup>
```

Adding Floating Point Numbers

- Requires that the binary points be aligned
- Equivalent to having the same exponent ... shift the mantissa of the smaller right, raising its exponent

```
1.000^{*}2^{-1} + 1.011^{*}2^{2} \quad (0.5 + 5.5)
```

Shift smaller right: 1.000x2⁻¹=0.100x2⁰=0.0100x2¹=0.001x2²

Add: $1.011 *2^{2} + 0.001 *2^{2} = 1.100 *2^{2}$ Renormalize: $1.100 *2^{2}$... it's OK

Result: 1.100 *22

Floating Point Instructions

- There are 32 fp registers: \$f0, \$f1, ... \$f31
 - The even numbered registers are used for sp
 - An even/odd pair is used for dp, with the odd numbered register holding the lsb mantissa bits
- Special load/store instructions move fp data to/fro mem
 1.s, s.s, 1.d, s.d
- Arithmetic operations (R-type) come in sp/dp forms
 add.s, add.d, sub.s, sub.d, mul.s, mul.d
- Comparisons make direct tests and set a condition bit
 c.le.s, c.lt.s, c.eq.s, c.ne.s, c.gt.s, c.ge.s
 c.le.d, c.lt.d, c.eq.d, c.ne.d, c.gt.d, c.ge.d
- Branch if true, bclt, and branch if false, bclf

To Infinity and Beyond

• IEEE 754 reserves certain representations for extreme conditions:

Sing	ıle	D	ouble						
Exp	Signif	Exp	Signif	Meaning					
0	0	0	0	Zero					
0	nonzero	0	nonzero	+/- unnormal					
1-254	anything	1-2046	anything	+/- floating p					
255	0	2047	0	+/- infinity					
255	nonzero	2047	nonzero	NaN					