C++

C++ is an enormous language:
• All of C
• Classes and objects (kind of like Java, some crucial differences)
• Many more little conveniences (I/O, new/delete, function overloading, pass-by-reference, bigger standard library)
• Namespaces (kind of like Java packages)
• Stuff we won’t do: const, different kinds of casts, exceptions, templates, multiple inheritance, …
• We will focus on a couple themes rather than just a “big bag of new features to memorize” …
Our focus

Object-oriented programming in a C-like language may help you understand C and Java better?

• We can put objects on the stack or the heap; an object is not a pointer to an object
• Still have to manage memory manually
• Still lots of ways to HCBWKMSCOD*
• Still distinguish header files from implementation files
• Allocation and initialization still separate concepts, but easier to “construct” and “destruct”
• Programmer has more control on how method-calls work (different defaults from Java)

*hopefully crash, but who knows – might silently corrupt other data
References

• Lectures and sample code will have enough to get by for cse374

• Beyond that, best place to start: C++ Primer, Lippman, Lajoie, Moo, 5th ed., Addison-Wesley, 2013

• Every serious C++ programmer should also read: Effective C++, Meyers, 3rd ed., Addison-Wesley, 2005
 • Best practices for standard C++
 • Effective Modern C++, Meyers, O’Reilly, 2014
 • Additional “best practices” for C++11/C++14

• Good online source: cplusplus.com
Hello World

```cpp
#include <iostream>
int main() {
    // Use standard output stream cout
    // and operator « to send "Hello World"
    // and a newline (end line) to stdout
    std::cout << "Hello World" << std::endl;
    return 0;
}
```

• Differences from C: “new-style” headers (no .h), namespace access (::), I/O via stream operators, ...
• Differences from Java: not everything is in a class, any code can go in any file, ...
 – Can write procedural programs if that’s what you want
Compiling

• Need a different compiler than for C; use g++ on Linux. Example:

  ```
g++ -Wall -g -std=c++11 -o hello hello.cc
  ```

• The .cc extension is a convention (just like .c for C), but less universal (also common: .cpp, .cxx, .C, …)

• Uses the C preprocessor (no change there)

• Now: A few “niceties” before our real focus (classes and objects)
I/O

• Operator \texttt{\textless\textgreater} takes a “ostream” and (various things) and outputs it; returns the stream, which is why this works:
 \begin{verbatim}
 std::cout \textless\textgreater 3 \textless\textgreater "hi" \textless\textgreater f(x) \textless\textgreater ' \textbackslash n' ;
 \end{verbatim}
 – Easier and safer than printf (type safe)

• Operator \texttt{\textgreater\textless} takes “istream” and (various things) and inputs into it
 – Easier and safer than scanf. Does not use pointers
 \begin{verbatim}
 int x; std::cin \textgreater\textless x;
 \end{verbatim}
Can “think of” >> and << as keywords, but they are not:

- Operator overloading redefines them for different pairs of types
 - In C and core C++ they mean “left-shift” and “right-shift” (of bits); undefined for non-numeric types
- Lack of address-of for input (cin>>x) done with call-by-reference (coming soon)
Namespaces

- In C, all non-static functions in the program need different names
 - Even operating systems with tens of millions of lines
- Namespaces (cf. Java packages) let you group top-level names:
  ```
  namespace thespace {
    ... definitions ...
  }
  ```
 - Of course, then different namespaces can have the same function names and they are totally different functions
 - Can nest them
 - Can reuse the same namespace in multiple places
 - Particularly common: in the .h and the .cc
- Example, the whole C++ standard library is in `namespace std`
- To use a function/variable/etc. in another namespace, do
  ```
  thespace::some_fun()
  ```
 (not . like in Java)
Using

- To avoid having to always write namespaces and :: use a *using declaration*
- Example:

```cpp
#include <iostream>
using namespace std;
int main() {
    cout << "Hello World" << endl;
    return 0;
}
```
Onto Classes and Objects

Like Java:
• Fields vs. methods, static vs. instance, constructors
• Method overloading (functions, operators, and constructors too)

Not quite like Java:
• access-modifier (e.g., private) syntax and default
• declaration separate from implementation (like C)
• funny constructor syntax, default parameters (e.g., ... = 0)

Nothing like Java:
• Objects vs. pointers to objects
• Destructors and copy-constructors
• virtual vs. non-virtual (to be discussed)
Stack vs. heap

- Java: cannot stack-allocate an object (only a pointer to one; all objects are dynamically allocated on the heap)
- C: can stack-allocate a struct, then initialize it
- C++: stack-allocate and call a constructor (where this is the object’s address, as always, except this is a pointer)

```java
    Thing t(10000);
```

- Java: `new Thing(...)` calls constructor, returns heap-allocated pointer
- C: Use `malloc` and then initialized, must free exactly once later, untyped pointers
- C++: Like Java, `new Thing(...),` but can also do `new int(42).` Like C must deallocate, but must use `delete` instead of free. (`never` mix `malloc/free` with `new/delete!`)
Destructors

• An object’s destructor is called just before the space for it is reclaimed
• A common use: Reclaim space for heap-allocated things pointed to (first calling their destructors)
 – But not if there are other pointers to it (aliases)?!
• Meaning of `delete x`: call the destructor of pointed-to heap object, then reclaim space
• Destructors also get called for stack-objects (when they leave scope)
• Advice: Always make destructors virtual (learn why soon)
Arrays

Create a heap-allocated array of objects: `new A[10];`
• Calls `default` (zero-argument) constructor for each element
• Convenient if there’s a good default initialization
Create a heap-allocated array of pointers to objects:

```
new A*[10];
```
• More like Java (but not initialized?)
• As in C, `new A()` and `new A[10]` have type `A*`
• `new A*` and `new A*[10]` both have type `A**`
• Unlike C, to delete a non-array, you must write `delete e`
• Unlike C, to delete an array, you must write `delete [] e`
• Else HYCSBWK – `delete` must be told when it is deleting an array (otherwise it tries to delete a single element)
Digression: Call-by-reference

• In C, we know function arguments are copies
 – But copying a pointer means you still point to the same (uncopied) thing
• Same also works in C++; but can also use a “reference parameter” (& character before var name)
• Function definition: \texttt{void f(int\& x) \{x = x+1;\}}
• Caller writes: \texttt{f(y)}
• But it’s as though the caller wrote \texttt{f(&y)} and every occurrence of \texttt{x} in the function really said \texttt{*x}.
• So that little \texttt{&} has a big meaning.
Copy Constructors

- In C, we know \texttt{x=y} or \texttt{f (y)} copies \texttt{y} (if a struct, then member-wise copy)
- Same in C++, unless a copy-constructor is defined, then do whatever the copy-constructor says
- A copy-constructor by definition takes a reference parameter (else we’d need to copy, but that’s what we’re defining) of the same type
- Copy constructor vs. assignment
 - Copy constructor \texttt{initializes} a new bag of bits (new variable or parameter)
 - Assignment (=) \texttt{replaces} an existing value with a new one – may need to clean up old state (free heap data?)
const

- **const** can appear in many places in C++ code
 - Basically means “doesn’t change” or “won’t change”, but there are subtleties
- Examples:
  ```cpp
  const int default_length = 125; // don’t use #define
  void examine (const thing &t); // won’t change t
  int getX() const; // won’t change *this
  ```
- “const correctness” is important in real C++ code
 - Learn it if you do any non-trivial C++
Still to come

• So far we have classes and objects (class instances)
 – Enough for many interesting types, particularly small concrete types like strings, complex, date, time, etc
• For full object-oriented programming we still need (and have) subclassing, inheritance, and related things
 – Many similarities with Java, but more options and different defaults