
 CSE 374 Midterm Exam 11/1/17

 Page 1 of 11

Name __ Id # _______________

There are 6 questions worth a total of 100 points. Please budget your time so you get to
all of the questions. Keep your answers brief and to the point.

The exam is closed book, closed notes, closed electronics, closed telepathy, etc.

Many of the questions have short solutions, even if the question is somewhat long. Don’t
be alarmed.

If you don’t remember the exact syntax of some command or the format of a command’s
output, make the best attempt you can. We will make allowances when grading.

Relax, you are here to learn.

Please wait to turn the page until everyone is told to begin.

Score _________________ / 100

1. ______ / 8

2. ______ / 8

3. ______ / 20

4. ______ / 16

5. ______ / 24

6. ______ / 24

The last page of the exam contains reference information that may be useful while
answering some of the questions. Do not write on this page – it will not be examined
while grading. You may remove that page from the exam if you wish.

 CSE 374 Midterm Exam 11/1/17

 Page 2 of 11

Question 1. (8 points, 2 each) Linux commands. Here is a brief transcript from a Linux
terminal session (user input follows each $ prompt, the rest is system output):

$ cd

$ pwd

/home/user

$ ls -l

drwxr-xr-x 2 user uw_ugrad 4 Oct 28 11:33 start

$ mkdir finish

$ ls start

atextfile btextfile adir dtextfile

$ cd start

$ ls adir

catextfile cbtextfile

After each of the following commands, write the output that it produces. You should
assume that the first command (pwd) is executed immediately after the above commands
and each subsequent line of commands is executed after the commands in the previous
parts of the question have been executed (i.e., the commands in parts (a) through (d) are
run one after the other).

(a) pwd

(b) mv adir/* ../finish/. ; ls

(c) echo $HOME

(d) cd ..; ls -l finish | wc -l

 CSE 374 Midterm Exam 11/1/17

 Page 3 of 11

Question 2. (8 points, 4 each) Aliases. Give alias commands that will create aliases
that work as described below.

(a) Define an alias datedir that will print the current date, the path to the current
directory, and the contents of that directory listed with details including the file dates and
permissions. Example:

 $ datedir
 Tue Oct 30 15:43:59 PDT 2017
 /home/user/docs
 total 12
 -rw-rw-r-- 1 user user 68 Oct 30 12:31 hello.c
 -rw-rw-r-- 1 user user 17 Oct 28 15:43 README
 -rw-rw-r-- 1 user user 35 Oct 12 13:15 story.txt

(b) The rm command provides an option -i that will ask the user to confirm that the files
should actually be deleted before attempting to remove them. Define an alias delete
that will execute rm -i on the file or files given as arguments to delete. Example
(the “y” answers are provided by the user, they are not printed by the alias or by rm):

 $ delete story.txt README
 rm: remove regular file ‘story.txt’? y
 rm: remove regular file ‘README’? y

 CSE 374 Midterm Exam 11/1/17

 Page 4 of 11

Question 3. (20 points) (A little scripting) Anticipating winter break, you’ve
accumulated a collection of books on your computer in plain ascii text files. Someone
asked you how many words are in a typical book, and, being an experienced Linux
hacker, you’ve decided to write a shell script to find out.

Write a script that has one or more file names as arguments and prints to stdout the
average number of words in the files. In other words, the script needs to figure out the
total number of words in the files, divide by the number of files, and print the result.

If no arguments are provided, print an appropriate error message to stderr (stream 2)
and exit with return code 1. Otherwise you can assume that the arguments are one or
more file names and you should calculate and print the average length of the file(s) to
stdout and then exit with return code 0. Your script should handle file names that have
embedded blanks in them like “short story”. Hints: wc -w (to calculate number of
words); integer arithmetic is good enough – don’t worry about accuracy beyond that.

Write your answer below. The #!/bin/bash that starts the script is provided for you.

#!/bin/bash

 CSE 374 Midterm Exam 11/1/17

 Page 5 of 11

Question 4. (16 points) (sed) One of our colleagues has been doing some data
extraction and has produced a file urls.txt that contains a collection of hyperlinks.
The input file has this format:

CSE:	UW	Allen	School	http	link	
Google	uses	https	Google		
sed	manual	

Notice that some URLs begin with http while others start with https. Some of the
descriptions like “UW Allen School” have embedded spaces, others don’t. Some of the
lines have text before the beginning “<a”, others don’t. Some have text following the
“” at the end of the link, others don’t. You can assume that none of the text before or
after the hyperlink has additional “<a …>” or “” tags in it. You can also assume
there is no extra whitespace or additional information besides the “href=” information
inside the “<a …>” tags. In other words, the input will be like the example without
additional pathological cases to consider.

Give a single sed command that will read this urls.txt file and write to stdout the
description in each link (the text between <a …> and), followed by a colon and a
space, and then followed by the URL from the link. For the above input, the output of
your sed command should be:

UW	Allen	School:	www.cs.washington.edu	
Google:	google.com	
sed	manual:	www.gnu.org/software/sed/manual/sed.html	

Write your sed command below:

 CSE 374 Midterm Exam 11/1/17

 Page 6 of 11

Question 5. (24 points) The traditional, annoying C program. As is usual, this program
compiles and executes without warnings or errors.

#include <stdio.h>
#include <stdlib.h>

void mystery(int* p, int* q, int n) {
 *q = p[1];
 *p = n+1;
 n = 44;
 /* draw picture at this point for part (a) */
 printf("during: %d %d %d\n", *p, *q, n);
}
void question(int* x, int *y) {
 int a;
 a = 33;
 printf("before: %d %d %d\n", *x, x[1], a);
 mystery(x, &a, *y);
 printf("after: %d %d %d\n", *x, x[1], a);
}
int main(int argc, char* argv[]) {
 int p[2];
 int n = 0;
 p[0] = 11;
 p[1] = 22;
 question(p, &n);
 printf("done: %d %d %d\n", p[0], p[1], n);
 return 0;
}

(a) (12 points) On the next page, draw a diagram showing the contents of memory when
execution reaches the “draw picture” comment in function mystery. Be sure to show
boxes for the local variables and parameters of all active functions. If a variable is a
pointer, indicate its value by drawing an arrow between the variable and the storage
location (variable) that it points to.

(b) (12 points) Fill in the lines below to show the output produced when this program is
executed.

before: ________ ________ ________

during: ________ ________ ________

after: ________ ________ ________

done: ________ ________ ________
(write your answer to part (a) on the next page)

 CSE 374 Midterm Exam 11/1/17

 Page 7 of 11

Question 5. (a) Draw your diagram here showing the contents of memory when
execution reaches the “draw picture” comment in function mystery.

 CSE 374 Midterm Exam 11/1/17

 Page 8 of 11

Question 6. (24 points) The small C programming exercise. A palindrome is a string
that contains the same sequence of characters forward or backward. For instance,
“mom”, “abba” and “racecar” are palindromes. For this problem, write a C program that
will read a text file and print to stdout each line from the file that is a palindrome.

Simplification: For this problem, a palindrome is a string that is absolutely identical in
both directions. So, for example, “racecar” is a palindrome, but “Racecar” is not because
the “R” at the front is not the same character as the “r” at the end. If there are spaces or
punctuation characters in the string they should be treated the same as any other character
– you do not need to do anything special to handle them. So “race car” is not considered
to be a palindrome for this question, while “no on” would be.

You should use standard C library functions in your solution when appropriate (the last
page of the exam contains a summary of some that might be useful). You do not need to
write #include directives – assume this has been done for you.

(a) (8 points) Complete the function is_palindrome(s) below so it returns 1 (true)
if its string parameter is a palindrome and 0 (false) if it is not. The string s is a proper C
string – an array of characters with a ‘\0’ byte at the end. The terminating ‘\0’ byte is not
part of the data that should be tested to see if the string is a palindrome – it simply marks
the end of the string.

// return 1 if s is a palindrome or 0 if it is not
int is_palindrome(char *s) {

}

(continued on next page)

 CSE 374 Midterm Exam 11/1/17

 Page 9 of 11

Question 6. (cont.) (b) (16 points) Now, write the main program that opens the file given
as an argument to the program (i.e., argv[1]), read each line in that file, and, if the
characters in that line forms a palindrome, print that line to stdout. If the file name is
missing, or if the file cannot be opened, the program should print a suitable message to
stderr and terminate with EXIT_FAILURE. If no error is detected, the program
should terminate with EXIT_SUCCESS when it is done. Your program must use
is_palindrome(s) from part(a) to decide if individual input lines are palindromes.

You may assume that no input line has more than 100 characters, including any newline
(‘\n’) or ‘\0’ bytes at the end of each line. An appropriate name has been #defined for
you to use. You may also assume that there is a ‘\n’ newline at the end of the last line in
the file if it matters. Hints: be sure that any ‘\n’ characters at the end of input lines are
not accidentally included when testing whether a line is a palindrome. You should not
use dynamic allocation (malloc/free) in your code – it is not needed.

#define MAX_LINE_LENGTH 100

int main(int argc, char **argv) {

}

(More space is provided on the next page for the rest of your answer if needed.)

 CSE 374 Midterm Exam 11/1/17

 Page 10 of 11

Question 6. (cont.) Extra space for your answer if needed.

 CSE 374 Midterm Exam 11/1/17

 Page 11 of 11

Reference Information

Some of this information might be useful while answering questions on the exam. Feel
free to remove this page for reference while you work. Please do not write on this page –
anything written here will not be graded.

Shell: Some of the tests that can appear in a [] or [[]] test command in a bash script:

• string comparisons: =, !=
• numeric comparisons: -eq, -ne, -gt, -ge, -lt, -le
• -d name test for directory
• -f name test for regular file

Shell variables: $# (# arguments), $? (last command result), $@, $* (all arguments), $0,
$1, … (specific arguments), shift (discard first argument)

Strings and characters (<string.h>, <ctype.h>)

Some of the string library functions:

• char* strncpy(dest, src, n), copies exactly n characters from src to dst,
adding ‘\0’s at end if fewer than n characters in src so that n chars. are copied.

• char* strcpy(dest, src)
• char* strncat(dest, src, n), append up to n characters from src to the end of

dest, put ‘\0’ at end, either copy from src or added if no ‘\0’ in copied part of src.
• char* strcat(dest, src)
• int strncmp(string1, string2, n), <0, =0, >0 if compare <, =, >
• int strcmp(string1, string2)
• char* strstr(string, search_string)
• int strnlen(s, max_length)
• int strlen(s)
• Character tests: isupper(c), islower(c), isdigit(c), isspace(c)
• Character conversions: toupper(c), tolower(c)

Files (<stdio.h>)

Some file functions and information:

• Default streams: stdin, stdout, and stderr.
• FILE* fopen(filename, mode), modes include “r” and “w”
• char* fgets(line, max_length, file), returns NULL on end of file
• int feof(file), returns non-zero if end of file has been reached
• int fputs(line, file)
• int fclose(file)

A few printf format codes: %d (integer), %c (char), %s (char*)

