
Name:

1. (Concurrency)

(a) Suppose we have an algorithm for finding the second-smallest element in a binary search
tree. The code is somewhat complicated to account for all possible tree shapes, but
it always descends to the correct node without making any modifications to the tree.
Suppose the code is in a method secondSmallestMidterm. Would it be correct for two
threads to execute secondSmallestMidterm concurrently? Explain briefly.

(b) Here is a simpler algorithm for finding the second smallest element in a binary search
tree in terms of some other operations:

int deleteMin() { ... } // guarded by mutex

int findMin() { ... } // guarded by mutex

void insert(int x) { ... } // guarded by mutex

int secondSmallestFinal() {

int min = this.deleteMin();

int ans = this.findMin();

this.insert(min);

return ans;

}

Notice deleteMin, findMin, and insert are synchronized methods, acquiring the lock
when they are called and releasing it after they return.

i. Suppose two threads call secondSmallestFinal concurrently. Demonstrate how
one of them can get the wrong answer.

ii. Does the code above have any data races? Explain briefly.

iii. What is the easiest way to fix secondSmallestFinal?

Page 1 of 6

Name:

2. (Concurrency) You are designing a new social-networking site to take over the world. To
handle all the volume you expect, you want to support multiple threads with a fine-grained
locking strategy in which each user’s profile is protected with a different lock. At the core of
your system is this simple class definition:

class UserProfile {

private:

static int id_counter;

int id; // unique for each account

int *friends = new int[9999]; // horrible style

int numFriends;

Image *embarrassingPhotos = new Image[9999];

mutex mtx;

public:

UserProfile() { // constructor for new profiles

id = id_counter++;

numFriends = 0;

}

void makeFriends(UserProfile *newFriend) {

mtx.lock();

newFriend->mtx.lock();

if(numFriends == friends.length

|| newFriend->numFriends == newFriend->friends.length)

throw TooManyFriendsException();

friends[numFriends++] = newFriend->id;

newFriend->friends[newFriend->numFriends++] = id;

}

}

void removeFriend(UserProfile frenemy) {

...

}

}

(a) The constructor has a concurrency error. What is it and how would you fix it? A short
English answer is enough – no code or details required.

(b) The makeFriends method has a concurrency error. What is it and how would you fix
it? A short English answer is enough – no code or details required.

Page 2 of 6

Name:

3. (Integer representation) Please complete the following table of 4-bit integer values (use a two’s
complement representation for signed values). Tables of powers of two and multiple of 16 are
provided in case you should fine them useful.

20 21 22 23 24 25 26 27

1 2 4 8 16 32 64 128

16× 2 3 4 5 6 7 8 9 10 11 12 13 14 15
= 32 48 64 80 96 112 128 144 160 176 192 208 224 240

binary unsigned decimal integer unsigned hexadecimal integer signed decimal integer

-4
0xE

0010
1111

-8

4. (x86-64 assembly)

(a) For each of the following C snippets, give a series of assembly instructions equivalent
to that snippet. Relevant register values are given in each case. You can omit width
specifiers on instructions (e.g., mov instead of movq). Note that register %rax is used as
the return value, so the assembly for any snippet with return must ensure the return
value is stored in %rax when the ret instruction executes.

i. C code: *p = *p + 1

p has type int*

Register state:
register value
%rdi value of p

x86-64 assembly:

ii. C code: return arr[i] + arr[i+1]

arr has type int* i has type int

Register state:

register value
%rdi value of arr
%rsi value of i

x86-64 assembly:

Page 3 of 6

Name:

iii. C code: node->next = node->next->next

node has type struct node*

struct node is a structure representing a linked list node that contains a string:

struct node {

char* word;

struct node *next;

}

Register state:
register value
%rdi value of node

x86-64 assembly:

(b) For each of the following series of assembly instructions, give the equivalent snippet of
C. Relevant register values and variable names are given in each case.

i. x86-64 assembly:

add %rsi, %rdx

imul %rdi, %rdx

mov %rdx, %rax

ret

Register state:

register value
%rdi value of variable a that has type int

%rsi value of variable b that has type int

%rdx value of variable c that has type int

C code:

ii. x86-64 assembly:

mov (%rsi,%rdx,8),%rbx

mov %rbx,(%rdi)

Register state:

register value
%rdi value of variable s that has type char*

%rsi value of variable argv that has type char**

%rdx value of variable i that has type int

C code:

Page 4 of 6

Name:

Reference

This is an incomplete list. Just because a command or option is documented here doesn’t
mean there is a question that uses it.

Bash

wc [OPTION]... [FILE]...

Print newline, word, and byte counts for each FILE, and a total line if

more than one FILE is specified.

-c, --bytes

print the byte counts

-l, --lines

print the newline counts

-w, --words

print the words counts

shell scripting

$(cmd) substitute with the stdout from running cmd

$((expr)) substitute with the result of evaluating expr -- useful for math

$n nth argument ($0 is the command itself)

$# number of arguments (does not include $0)

$@ a list of all the arguments (does not include $0)

$? the exit status of the most recent command

shift discard the first argument ($1) and move the remaining arguments

down ($2 becomes $1 and so on, this affects $# and $@).

for item in list_of_things

do

...

done

if TEST

then

...

fi

tests:

[-d file] true if file exists and is a directory

[-e file] true if file exists, regardless of type

[-f file] true if file exists, and is a regular file

[-n string] true if length of string is nonzero

[-z string] true if length of string is zero

[s1 = s2] true if the strings s1 and s2 are identical.

[s1 != s2] true if the strings s1 and s2 are not identical.

[n1 -eq n2] true if integer n1 is equal to integer n2.

similarly for not equal (-ne), greater than (-gt),

and less than (-lt)

Page 5 of 6

Name:

x86-64 assembly

instructions:

instruction effect description
mov S,D D ← S move
add S,D D ← D + S add
sub S,D D ← D − S subtract
imul S,D D ← D ∗ S multiply
ret returns, uses value in %rax as return value return

operand forms:

type form operand value
immediate $D D
register %R value stored in register R
memory D value at memory location D
memory (%R) value at memory location given by value stored in register R
memory D(%Rb) value at memory location D + Rb

memory (%Rb,%Ri) value at memory location Rb + Ri

memory D(%Rb,%Ri) value at memory location D + Rb + Ri

memory (,%Ri, s) value at memory location Ri · s
memory D(,%Ri, s) value at memory location D + Ri · s
memory (%Rb,%Ri, s) value at memory location Rb + Ri · s
memory D(%Rb,%Ri, s) value at memory location D + Rb + Ri · s

The scaling factor s must be either 1, 2, 4, or 8.

Page 6 of 6

