
Name:

CSE374 Winter 2016, Final Examination
March 17, 2016

Please do not turn the page until the bell rings.
Rules:

• The exam is closed-book, closed-note, closed-calculator, and closed-electronics.

• Please stop promptly at 10:20.

• There are 92 points total, distributed unevenly among 10 questions (many with multiple
parts):

Question Max Earned

1 9

2 11

3 9

4 14

5 11

6 10

7 8

8 9

9 10

10 1

Advice:

• Read questions carefully. Understand a question before you start writing.

• Write down thoughts and intermediate steps so you can get partial credit. But
clearly indicate your final answer.

• The questions are not necessarily in order of difficulty. Skip around. Make sure you get to
all the problems.

• There is reference material at the end of the exam.

• If you have questions, ask.

• Relax. You are here to learn.

Page 1 of 19

Name:

1. (9 points) (Concurrency) Below we give part of the definition of Queue, a class representing
a queue data structure (first-in, first-out) of ints. It uses a linked list internally. The class
has a private instance mutex variable that it uses to synchronize concurrent calls to some of
its methods.

typedef struct node {

int data;

struct node *next;

} ListNode;

class Queue{

private:

ListNode *front;

ListNode *back;

mutex mtx;

public:

int peek() {

if (front == NULL) {

throw Exception();

}

return front->data;

}

int dequeue() {

// a lock_guard causes the mutex to be held for the duration of the function

lock_guard<mutex> lock(mtx);

if (front == NULL) {

// the lock_guard releases the lock when an exception occurs

throw Exception();

}

int val = front->data;

front = front->next;

return val;

// lock variable goes out of scope, so the mutex is released

}

};

Consider a scenario where we have two threads, T1 and T2, which share a variable q, an
instance of the Queue class. For each of the following cases where methods of q are called
simultaneously, describe a bad interleaving or briefly explain why no bad interleaving is pos-
sible. We define a bad interleaving to be an interleaving of method operations that causes an
incorrect result (wrong value returned, segmentation fault, etc.).

(a) T1 calls q.peek() and T2 calls q.peek()

Page 2 of 19

Name:

(b) T1 calls q.peek() and T2 calls q.dequeue()

(c) T1 calls q.dequeue() and T2 calls q.dequeue()

(d) For each case where you described a bad interleaving, briefly explain how to prevent bad
interleavings in that case using mutual exclusion.

Solution:

(a) No bad interleavings are possible. peek only reads from the linked list, and simultaneous
reads will not cause a race condition.

(b) In the case where the queue has a single element, if front = front->next in dequeue

happens between front == NULL and return front->data in peek, the latter state-
ment will cause a segmentation fault by dereferencing a null pointer.

(c) No bad interleavings are possible. The second call to dequeue will block until the first
has completed.

(d) peek should also be guarded by the mutex.

Page 3 of 19

Name:

2. (11 points) (Concurrency) Below we give part of the definition of Str, a class representing
a string.

class Str {

public:

int length() const {

return strlen(st_);

}

void append(const Str &s) {

mtx.lock();

char *newst = new char[strlen(st_) + strlen(s.st_) + 1];

strcpy(newst, st_);

strcat(newst, s.st_);

delete [] st_;

st_ = newst;

mtx.unlock();

}

private:

char *st_;

mutex mtx;

};

We are again interested in the consequences of simultaneous calls to certain methods.

(a) In the case where append and length are called simultaneously, there is a data race.
Briefly explain where and why.

(b) Briefly explain how to use mutual exclusion to prevent this data race.

Page 4 of 19

Name:

(c) In the case where there are two Str instances, a and b, and a thread T1 calls a.append(b),
while another thread T2 calls b.append(a), there is at least one data race. Briefly ex-
plain where and why.

(d) Explain why the “fix” to append given below won’t work, and discuss an alternative
approach.

void append(const Str &s) {

mtx.lock();

s.mtx.lock();

char *newst = new char[strlen(st_) + strlen(s.st_) + 1];

strcpy(newst, st_);

strcat(newst, s.st_);

delete [] st_;

st_ = newst;

s.mtx.unlock();

mtx.unlock();

}

Solution:

(a) There is a data race on st_. length could read from it at the same time append writes
to it.

(b) Use mtx to guard length as well.

(c) There is a data race on a.st_ and b.st_. T1 might write to a.st_ at the same time T2
reads from a.st_. Similarly, T2 might write to b.st_ at the same time T1 reads from
b.st_.

(d) This fix could result in deadlock. Potential solutions include a single lock for all instances
of Str, or imposing some order on instances of Str, and acquiring the locks according to
that order. The former would restrict parallelism, and the latter would require adding
some unique identifier to Str.

Page 5 of 19

Name:

3. (9 points) (Integer representation) Please complete the following table of 8-bit integer values
(use a two’s complement representation for signed values). Powers of two and multiples of 16
are provided as a reference.

27 26 25 24 23 22 21 20

128 64 32 16 8 4 2 1

16× 2 3 4 5 6 7 8 9 10 11 12 13 14 15
= 32 48 64 80 96 112 128 144 160 176 192 208 224 240

binary unsigned integer unsigned hexadecimal integer signed integer

-32

0x3F

10011100

Space for scratch work:

Solution:

binary unsigned integer unsigned hexadecimal integer signed integer

11100000 224 0xE0 -32

00111111 63 0x3F 63

10011100 156 0x9C -100

Page 6 of 19

Name:

4. (14 points) (x86-64 assembly)

(a) For each of the following C snippets, give a series of assembly instructions equivalent
to that snippet. Relevant register values are given in each case. You can omit width
specifiers on instructions (e.g., mov instead of movq). Note that register %rax is used as
the return value, so your assembly code must ensure the return value is stored in %rax

when the ret instruction executes.

i. C code: return a * b - c

a has type int

b has type int

c has type int

Register state:

register value
%rdi value of variable a

%rsi value of variable b

%rdx value of variable c

x86-64 assembly:

ii. C code: return pt->x * pt->x + pt->y * pt->y

pt has type Point*

Point is a typedef for a structure representing a 2D point:

typedef struct {

int x;

int y;

} Point;

Register state:
register value
%rdi value of pt

x86-64 assembly:

Page 7 of 19

Name:

(b) For the following series of assembly instructions, give the equivalent snippet of C. Rele-
vant register values and variable names are given.

x86-64 assembly:

mov (%rdi,%rsi,4), %rbx

mov 4(%rdi,%rsi,4), %rcx

mov %rcx, (%rdi,%rsi,4)

mov %rbx, 4(%rdi,%rsi,4)

Register state:

register value
%rdi value of variable array that has type int*

%rsi value of variable index that has type int

C code:

Solution:

(a) i. imul %rdi, %rsi

sub %rdx, %rsi

mov %rsi, %rax

ret

ii. mov (%rdi), %rbx

imul %rbx, %rbx

mov 4(%rdi), %rax

imul %rax, %rax

add %rbx, %rax

ret

(b) int temp1 = array[index];

int temp2 = array[index + 1];

array[index] = temp2;

array[index + 1] = temp1;

Page 8 of 19

Name:

5. (11 points) (Bash scripting) Write a shell script projectsize that prints the total size in
bytes of the C source files in a directory. The command

projectsize DIR

should print the total size in bytes of the C source files in the directory DIR.

Your script should meet the following specification:

1. Print an informative error message to stderr if DIR does not exist.

2. If no argument is given, print the total size in bytes of the C source files in the current
directory

3. Treat as a C source file any file that ends in .c or .h.

4. Ignore subdirectories of DIR (or the current directory).

You can use wc to get the number of bytes in a file. To test if a file ends in .c or .h, you can use
the extension-test command. man extension-test provides the following documentation:

NAME

extension-test -- test if a file ends in a specific extension

SYNOPSIS

extension-test [OPTION]... FILE EXT

DESCRIPTION

The extension-test utility checks if FILE ends in EXT, and sets its exit status

accordingly (similar to [] command).

EXT should not include the ‘.’ part of the extension.

The following options are available:

-i

Ignores case when comparing FILE and EXT

--mult

Multiple EXT are given, exit with success if FILE ends in any of the

given EXT

-x

In addition to checking that FILE ends in EXT, also checks that FILE

is executable

Please write your script on the following page.

Page 9 of 19

Name:

Write your answer to problem 5 here.

Solution:

#!/bin/bash

dir="."

if [$# -gt 0]

then

dir=$1

fi

if [! -d $dir]

then

echo $dir does not exist >&2

exit 1

fi

total=0

cd $dir

for file in $(ls)

do

if extension-test --mult $file c h

then

size=$(wc -c < $file)

total=$((total + size))

fi

done

echo $total

Page 10 of 19

Name:

6. (10 points) (C programming) Your task is to implement the C standard library function
strcat. You may implement any helper functions you find useful. Your strcat function
must meet the following specification:

1. Matches the declaration char * strcat (char * destination, char * source)

2. Assumes destination and source are valid C strings (i.e., non-NULL, end in null termi-
nator).

3. Appends a copy of the source string to the destination string. The terminating null
character in destination is overwritten by the first character of source, and a null-
character is included at the end of the new string formed by the concatenation of both
in destination.

4. Assumes destination is large enough to contain the concatenated resulting string.

5. Returns destination

6. Does not use any standard library functions (e.g., strlen)

Solution:

char* strcat(char *destination, char *source) {

char *cur = destination;

while(*cur != ’\0’) {

cur++;

}

while(*source != ’\0’) {

*cur = *source;

cur++;

source++;

}

*cur = ’\0’;

return destination;

}

Page 11 of 19

Name:

7. (8 points) (Toolchain) Recall that there are several steps needed to build an executable
program from source files and libraries. Below is a list of several possible errors that can
occur when a program is compiled, linked, or executed. For each error, indicate the earliest
stage in the process of building and executing the program where it is always possible to
discover the error and produce some sort of error message or failure. (Note, for example,
that some errors can be detected early, say division by 0 if the program contains x/0 in the
source code, but in general division by 0 cant be detected until the program is executed if it
is dividing x/y and the value of y is not known until runtime.)

Identify where (when) each possible error can definitely be detected. Fill in one of the following
codes in the space provided:

• cpp - C preprocessor

• comp - C compiler

• ld - linking/loading step

• exe - during program execution

• can’t - cannot be detected always (including illegal programs that might not actually fail
during execution)

calling free on a pointer to stack-allocated data

dereferencing a pointer ptr, where ptr == 0x0

using a variable before it has been declared

making a typo when including a standard library header (e.g., #include <sgtio.h>

a function returns a pointer to one of its local variables

when the following code is compiled and/or run (the code below is all the code there is)

int Foo();

int main() {

int a = Foo();

return 0;

}

the function char* lookup(ListNode *list, char *word) is called with the parame-
ters in the wrong order

strncpy is used to copy a char*, but the null terminator is not copied

Solution:

• can’t

• exe

• comp

• cpp

• can’t

Page 12 of 19

Name:

• ld

• comp

• can’t

Page 13 of 19

Name:

8. (9 points) (C programming) You are working on a C data structure for a doubly-linked list
(i.e., a linked list that has both next and previous links for each node). Each node stores a
struct representing a user. Here are the structs you’re using:

typedef struct {

int id;

char *name;

} User;

typedef struct node {

User *user;

struct node *prev;

struct node *next;

} ListNode;

The nodes and user data they store are allocated on the heap. Your task is to implement a
function to remove a node from the list. Your function must meet the following specification:

1. Matches the declaration int remove(ListNode *root, int target_id)

2. Removes the first node after root that has a user with an id equal to target_id (root
itself will never be removed)

3. Deallocates all memory used by the removed node and returns true.

4. If there are no nodes in the list, or no node has an id equal to target_id, returns false.

Solution:

int remove(ListNode *root, int target_id) {

while(root != NULL && root->next != NULL) {

if (root->next->user->id == target_id) {

ListNode *del = root->next;

root->next = root->next->next;

root->next->prev = root;

free(del->user->name);

free(del->user);

free(del);

return 1;

}

root = root->next;

}

return 0;

}

Page 14 of 19

Name:

9. (10 points) (C++) Consider the following program, which compiles and executes without
errors.

class Rational {

public:

Rational();

Rational(int n);

Rational(int n, int d);

Rational(const Rational &other);

~Rational();

Rational &operator=(const Rational &other);

private:

int num;

int denom;

};

// implementations

Rational::Rational(): num(0), denom(0)

{ cout << "default constructor" << endl; }

Rational::Rational(int n): num(n), denom(0)

{ cout << "one int constructor" << endl; }

Rational::Rational(int n, int d): num(n), denom(d)

{ cout << "two int constructor" << endl; }

Rational::Rational(const Rational &other): num(other.num), denom(other.denom)

{ cout << "copy constructor" << endl; }

Rational::~Rational() { cout << "destructor" << endl; }

Rational & Rational::operator=(const Rational &other) {

cout << "assignment" << endl;

this->num = other.num;

this->denom = other.denom;

return *this;

}

int main() {

Rational *r2 = new Rational(1, 2);

Rational r1();

Rational *r3 = &r1;

r1 = *r2;

Rational r4 = 5;

*r2 = r4;

delete r2;

Rational r5 = r1;

return 0;

}

What output is produced when this program is executed?

Solution:

two int constructor

default constructor

assignment

one int constructor

Page 15 of 19

Name:

assignment

destructor

copy constructor

destructor

destructor

destructor

Page 16 of 19

Name:

10. (1 point) (Haiku) Please compose a haiku about something you learned this quarter. Here’s
mine:

inheritance can
cause so many bugs, you are
better off without

Page 17 of 19

Name:

Reference

This is an incomplete list. Just because a command or option is documented here doesn’t
mean there is a question that uses it.

Bash

wc [OPTION]... [FILE]...

Print newline, word, and byte counts for each FILE, and a total line if

more than one FILE is specified.

-c, --bytes

print the byte counts

-l, --lines

print the newline counts

-w, --words

print the words counts

shell scripting

$(cmd) substitute with the stdout from running cmd

$((expr)) substitute with the result of evaluating expr -- useful for math

$n nth argument ($0 is the command itself)

$# number of arguments (does not include $0)

$@ a list of all the arguments (does not include $0)

$? the exit status of the most recent command

shift discard the first argument ($1) and move the remaining arguments

down ($2 becomes $1 and so on, this affects $# and $@).

for item in list_of_things

do

...

done

if TEST

then

...

fi

tests:

[-d file] true if file exists and is a directory

[-e file] true if file exists, regardless of type

[-f file] true if file exists, and is a regular file

[-n string] true if length of string is nonzero

[-z string] true if length of string is zero

[s1 = s2] true if the strings s1 and s2 are identical.

[s1 != s2] true if the strings s1 and s2 are not identical.

[n1 -eq n2] true if integer n1 is equal to integer n2.

similarly for not equal (-ne), greater than (-gt),

and less than (-lt)

Page 18 of 19

Name:

x86-64 assembly

instructions:

instruction effect description
mov S,D D ← S move
add S,D D ← D + S add
sub S,D D ← D − S subtract
imul S,D D ← D ∗ S multiply
ret returns, uses value in %rax as return value return

operand forms:

type form operand value
immediate $D D
register %R value stored in register R
memory D value at memory location D
memory (%R) value at memory location given by value stored in register R
memory D(%Rb) value at memory location D + Rb

memory (%Rb,%Ri) value at memory location Rb + Ri

memory D(%Rb,%Ri) value at memory location D + Rb + Ri

memory (,%Ri, s) value at memory location Ri · s
memory D(,%Ri, s) value at memory location D + Ri · s
memory (%Rb,%Ri, s) value at memory location Rb + Ri · s
memory D(%Rb,%Ri, s) value at memory location D + Rb + Ri · s

The scaling factor s must be either 1, 2, 4, or 8.

Page 19 of 19

