
 CSE 374 Midterm Exam 11/2/15 Sample Solution

 Page 1 of 9

Question 1. (10 points) Suppose the following files and subdirectories exist in a
directory:

 .bashrc proj/test.exe
 .emacs proj/test.c
 .bash_profile proj/test.o
 proj proj/thing.c
 proj/data proj/thing.h
 proj/data/dict.txt proj/thing.o
 proj/data/smalldict.txt
 proj/notes
 proj/notes/todo.txt
 proj/notes/readme.txt

Answer the following questions assuming that this directory is the initial current directory
when each of the following sets of commands are executed.

(a) (5 points) What output is produced by the following commands?

 cd proj
 ls *.[ch] > xyzzy
 ls notes/* >> xyzzy
 cat xyzzy

Output:
 test.c
 thing.c
 thing.h
 notes/readme.txt
 notes/todo.txt

A common error was to miss that “notes/” is included in the names produced by
the second ls command. Another was that each ls command lists the files in
alphabetical order. Only a minor deduction was made for these bugs.

(b) (5 points) What do the following commands do?

 cd proj
 mv */*.txt ..

Moves the files with names ending in “.txt” in proj/data/ and proj/notes/
into the parent directory above proj, i.e., the same one containing .bashrc and
proj.

 CSE 374 Midterm Exam 11/2/15 Sample Solution

 Page 2 of 9

Question 2. (12 points, 4 each) Give regular expressions that could be used with grep
(or egrep) to search the wordlist we used as an example in class for words that match
the description given. For each answer, circle “grep” or “egrep” to indicate whether your
answer is using basic or extended regular expressions.

Simplification: for this problem, assume that all letters are lower-case ‘a’-‘z’. You do not
need to consider upper-case letters ‘A’-‘Z’.

(a) Words that contain only vowels (one or more of the letters aeiou). Examples include
“eau” and “oui”.

Circle: grep egrep

Answer:

 grep: ^[aeiou][aeiou]*$ ([aeiou]\+ also ok, although it is gnu-only)
 egrep: ^[aeiou]+ (grep solution also works for egrep)

(b) Words that contain exactly 7 characters and are palindromes, i.e., are the same
forwards or backwards. Examples include “pip-pip”, “rotator”, and “repaper”.

Circle: grep egrep

Answer:

 grep: ^\(.\)\(.\)\(.\).\3\2\1$
 egrep: ^(.)(.)(.).\3\2\1$

(c) Words that contain the same sequence of three characters repeated three or more
times. Examples include “hemidemisemiquaver”* (“emi” repeated three times),
“expressionlessness” (“ess”), “cha-cha-cha”.

Circle: grep egrep

Answer:

 grep: \(...\).*\1.*\1
 egrep: (...).*\1.*\1

Note: Most of these regular expressions would need to be surrounded by ‘ ’ quotes if
typed as part of a grep command in bash. We gave full credit for correct answers
with and without the shell quotes.

*Trivia: a hemidemisemiquaver is British for a 64th note in music notation.

 CSE 374 Midterm Exam 11/2/15 Sample Solution

 Page 3 of 9

Question 3. (12 points) (debugging) Suppose you have a large program named app that
contains a function f. For each part below, be very specific about how you would run
commands and programs and in what order to answer the question.

(a) (6 points) You would like to determine if f is ever called when app is run with the
command-line parameter 42. You cannot change the source code but you can use the
gcc and gdb commands however you like.

• Compile the program with the gcc -g option
• Use the command gdb ./app to launch gdb
• Set a breakpoint at the beginning of function f.
• Enter the gdb command run 42 to start the program

If the breakpoint is reached before the program terminates we know that f is called.
If not, then f was never called during execution.

(b) (6 points) Extending the previous question, we have learned that f is called many,
many times. Now suppose that app also has a function g and you would like to know if
running app 42 causes f to be called after g is called but before g returns. How would
you answer this question efficiently without having to examine the situation every time f
is called? (You may assume that g is called a small number of times.) As before, you
cannot modify the code, but you can use gcc and gdb however you want.

• As before, be sure the program was compiled with gcc -g and launch gdb
with gdb ./app. (No deduction if this was implied by your answer and not
stated again.)

• Set breakpoints at the beginning and end of function g.
• Enter run 42 in gdb to start the program.
• If execution pauses at the breakpoint at the beginning of function g, set a

breakpoint at the beginning of f and enter continue to resume execution.
• If execution pauses at the breakpoint in f before reaching the breakpoint at

the end of g, we have our answer (yes).
• If execution reaches the breakpoint at the end of g without hitting the

breakpoint in f, clear or disable the breakpoint in f and use continue to
resume execution.

• If the program terminates without ever reaching f from g, the answer is
“no”.

This sample answer is more detailed and descriptive than needed to get full credit,
provided that the answer clearly indicated the steps to be taken and commands
needed.

 CSE 374 Midterm Exam 11/2/15 Sample Solution

 Page 4 of 9

Question 4. (16 points) (A little scripting) For this problem write a shell script that
takes as arguments a simple string and a list of file names. The script should write to
standard output only the names of the files that contain one or more copies of the given
string. Nothing else should be written to standard output. Your script should use grep
to check files to see if they contain the string. For example, if the script is name
listfiles, then the command

 ./listfiles stdio foo.c hamlet.txt /usr/bin hw4.c handout

would produce the output

foo.c
hw4.c
handout

if these three files are the only ones that contain the string “stdio”.

Your script should ignore any file names on the command line that are not ordinary files
(i.e., ignore special files and directories like /usr/bin in the above example). The
script should work properly if any of the files have names containing embedded spaces.

The script should exit with an appropriate error message if there is not at least one
argument (the search string). This message can be written to either stdout or stderr
– your choice.

Useful grep information: the exit status code returned from grep when it terminates is
one of the following:

• 0 – some line in the file was selected
• 1 – no lines were selected
• 2 – some error occurred

Restriction: grep has dozens of options and those likely include ones that might even do
some or all of what this script is asked to do. But you may not use these. Use grep in
your script to search ordinary files in the list and use shell commands and options to
suppress any unwanted output that grep would ordinarily write to stdout.

Please write your answer on the next page.

(You may remove this page for reference if you wish.)

 CSE 374 Midterm Exam 11/2/15 Sample Solution

 Page 5 of 9

Question 4. (cont.) Write your answer on this page.

 #!/bin/bash

 if [$# -lt 1]
 then
 echo "usage: $0 STRING [FILES]..."
 exit 1
 fi

 str=$1
 shift

 for file in "$@"; do
 if [-f "$file"]
 then
 grep "$str" "$file" &> /dev/null
 if [$? -eq 0]
 then
 echo "$file"
 fi
 fi
 done

 CSE 374 Midterm Exam 11/2/15 Sample Solution

 Page 6 of 9

Question 5. (4 points) (Aliases). Although we’ll eventually learn about make and how
to automate the build process, for right now it would be nice just to have something so we
can compile programs without having to type all of the necessary gcc options each time.

Give a shell command to define an alias build so that build x y z... will execute
the command gcc -Wall -g -std=c11 x y z... (where x y z... are any
additional options, file names, or arguments to be supplied to gcc).

 alias build="gcc -Wall -g -std=c11"

Question 6. (10 points) (sed and style) The clint style checker flags several things that
we could probably fix with a simple sed command. Fill in the blanks in the sed
commands below so they will read the file x.c and write to stdout a copy of the file in
which the identified style issue has been fixed.

Restrictions: you must use basic regular expressions, not extended, and each solution
must use a single sed “s” command with appropriate patterns to do the job.

(a) (5 points) Change all occurrences of “while(”, “for(”, and “if(” by adding a
blank before the “(”s to get “while (”, “for (”, and “if (”. Hint: in a sed
pattern, ‘\(’ is a sed parenthesis for grouping parts in a pattern; a plain ‘(’ is an
ordinary parenthesis character. The regexp operator \| can be used as “or”, e.g., p1\|p2
matches either p1 or p2.

 sed -e 's/\(while\|for\|if\)(/\1 (/g' x.c

sed -e 's/ _____________________________________ / __________________ / __ ' x.c

(a) (5 points) Remove all trailing whitespace from all source lines. For this question,
only tabs (\t) and blanks are considered to be whitespace.

 sed -e 's/[\t]*$//' x.c

sed -e 's/ _____________________________________ / __________________ / __ ' x.c

 CSE 374 Midterm Exam 11/2/15 Sample Solution

 Page 7 of 9

Question 7. (16 points) The traditional, annoying C program.

#include <stdio.h>
#include <string.h>

void confuse(int *a, int *b, int n) {
 *a = 20;
 b[1] = *b + n;
 a = b + 2;
 *a = 15;
 printf("confuse: *a = %d, *b = %d, n = %d\n", *a, *b, n);
}

int main() {
 int x = 17;
 int a[4];
 a[0] = 10; a[1] = 11;
 a[2] = 12; a[3] = 13;
 int * p = &x;
 int * q = a;
 q[2] = 42;
 printf("x = %d, *p = %d, *q = %d\n", x, *p, *q);
 printf("a = {%d, %d, %d, %d}\n", a[0], a[1], a[2], a[3]);

 confuse(p, q, x);

 printf("x = %d, *p = %d, *q = %d\n", x, *p, *q);
 printf("a = {%d, %d, %d, %d}\n", a[0], a[1], a[2], a[3]);
 return 0;
}

Fill in the lines below to show the output produced when this program is executed? (It
does compile and execute with no errors.) Although not absolutely required, you should
draw diagrams showing variables and pointers to help answer the question and to help us
award partial credit if needed. Output:

x = 17, *p = 17, *q = 10

a = {10, 11, 42, 13}

confuse: *a = 15, *b = 10, n = 17

x = 20, *p = 20, *q = 10

a = {10, 27, 15, 13}

 CSE 374 Midterm Exam 11/2/15 Sample Solution

 Page 8 of 9

Question 8. (20 points) (The small C programming exercise.) On the next page, give an
implementation of the standard C library function strncat. The basic idea of this
function is to add to a string by appending the contents of another string. Example:

 char s[20];
 strncpy(s, "sea", 20);
 strncat(s, "hawks", 5);
 printf("%s\n", s);

prints seahawks.

The full specification of strncat is:

 char* strncat(char *dest, char *src, int n);

• Append up to n characters from the contents of src to the end of dest.
• If the null (‘\0’) character that terminates src is encountered before n characters

have been copied, then the null character is copied but no more.
• If no null character appears among the first n characters of src, then the first

n characters of src are copied and a null character is supplied to terminate dest,
i.e., n+1 characters in all are written.

• If n ≤ 0 then calling strncat has no effect.
• The function returns the value dest (i.e., a copy of the original dest pointer).

Restriction: you may not call any other library functions in <string.h> or elsewhere. You
should implement strncat by processing the strings (character arrays) directly.

You may not need nearly as much space as is available for your answer.

Write your answer

on

the

next

page

(You may detach this page from the exam if that is convenient.)

 CSE 374 Midterm Exam 11/2/15 Sample Solution

 Page 9 of 9

Question 8. (cont). Complete the definition of function strncat below.

char* strncat(char *dest, char *src, int n) {

 // exit if nothing to do
 if (n <= 0)
 return dest;

 char* destptr = dest; // = current position in result

 // advance destptr to '\0' at end of original dest
 while (*destptr != '\0')
 destptr++;

 // Copy up to n characters from src but stop
 // if '\0' found
 char* srcptr = src;
 int ncopied = 0;

 while (ncopied < n && *srcptr != '\0') {
 *destptr = *srcptr;
 destptr++;
 srcptr++;
 ncopied++;
 }

 // add '\0' at end
 *destptr = '\0';

 // result is original dest
 return dest;

}

There are obviously many other solutions, particularly more compact ones that take
advantage of C idioms like *destptr++ = *srcptr++, and others that use
array subscript notation instead of pointers and explicit dereferencing. It would
also be ok to modify the src and n parameters to keep track of the source string
position and number of characters copied, rather than introducing new variables as
above. All correct solutions received full credit.

