
CSE 374
Programming Concepts & Tools

Brandon Myers
Winter 2015

Lecture 7 – Introduction to C: The C Level of Abstraction
(Thanks to Hal Perkins)

Welcome to C

Compared to Java, in rough order of importance
–  Lower level (less for compiler to do)
–  Unsafe (wrong programs might do anything)
–  Procedural programming — not “object-oriented”
–  “Standard library” is much smaller
–  Many similar control constructs (loops, ifs, ...)
–  Many syntactic similarities (operators, types, ...)

•  A different world-view and much more to keep track
of; Java-like thinking can get you in trouble

2

Our plan

A semi-nontraditional way to learn C:
•  Learn how C programs run on typical x86 machines

–  Not promised by C’s definition
–  You do not need to “reason in terms of the implementation”

when you follow the rules
–  But it does help to know this model

•  To remember why C has the rules it does
•  To debug incorrect programs
•  To write better programs (performance, portability…)

•  Learn some C basics (including “Hello World!”)
•  Learn what C is (still) used for
•  Learn more about the language and good idioms
•  Towards the end of the quarter: Some C++ (C with classes and

other conveniences of a modern language)

3

Some references

There’s a lot on the web, but here are some primary sources
C: A Reference Manual, Harbison & Steele (now 5th ed.)

•  The best current reference on C and its libraries;
includes information about recent versions of the C
standard

The C Programming Language, Kernighan & Ritchie
•  “K&R” is a classic, one that every programmer must

read. A bit dated now (doesn’t include C99 or C11
extensions), but the primary source

Essential C, Stanford CS lib, http://cslibrary.stanford.edu/
101/EssentialC.pdf
Good short introduction to the language

4

Why C?

•  small language (i.e., a minimum of features) makes it
relatively easy to write a compiler for C (contrast with
C++)

•  provides low level control over the computer, closer
to that of assembly (machine) language

•  Still used in:
–  embedded programming
–  systems programming
–  high-performance programming (lots of fast

libraries for nicer languages are written in C)
•  Additional reason for CSE 374: programming in C will

help us understand better how computers work
5

Address space

Simple model of a running process (provided by the OS):
•  There is one address space (an array of bytes)

–  Most common size today for a typical machine is 232 or 264
–  For most of what we do it doesn’t matter
–  264 is way more RAM than you have, you might have 232

(4GB) or more (OS maintains illusion that all processes have
this much even if they don’t – may lead to slowness)

–  pointing to an element of this array takes 32 or 64 bits
–  Something’s address is its position in this array
–  Trying to read a not-used part of the array may cause a

“segmentation fault” (immediate crash)
–  In contrast, in Java every call to new provides an isolated

object
•  All data and code for the process are in this address space

–  Code and data are bits; program “remembers” what is where
–  O/S also lets you read/write files (stdin, stdout, stderr, etc.)

6

Address-space layout

•  The following can be different on different systems, but it’s one way
to understand how C is implemented:

 code globals heap → … ← stack

•  So in one array of 8-bit bytes we have:
–  Code instructions (typically immutable)
–  Space for global variables (mutable and immutable) (like Java’s

static fields)
–  A heap for other data (like objects returned by Java’s new)
–  Unused portions; access causes a “seg-fault”
–  A call-stack holding local variables and code addresses

•  ints typically occupy 4 bytes (32 bits); pointers 4 or 8 (32 or 64)
depending on underlying processor/OS (64 on our machines)

7

0x0	

0x00600000	
0xffffffff	

0x00400000	

Address-space layout

8

local variables, return addresses
for function calls
(managed “automatically” by
compiler)

allocated memory like objects
(managed by programmer)

global variables
(initialized when process starts)

constants
(initialized when process starts)

code
(initialized when process starts)

read/write;
not executable

read/write;
 not executable

read/write;

 not executable

read-only;
not executable

read-only;

executable
[Thanks to CSE 351]

The stack

•  The call-stack (or just stack) has one part, or “frame”,
for each active function (cf. Java method) that has not
yet returned

9

Stack-based languages
•  Languages that support recursion

–  e.g., C, Java, most modern languages
–  Code must be re-entrant

•  multiple simultaneous instantiations of a single function
–  need some place to store state of each instantiation

•  arguments
•  local variables
•  return address (index into code for what to execute after the

function is done)
•  stack discipline

–  state for a given procedure needed for a limited time
•  starting from when it is called
•  ending when it returns

–  callee always returns before the caller does
•  stack allocated in frames

–  state for a single procedure instantiation 10 [Thanks to CSE 351]

Call chain example

11 [Thanks to CSE 351]

yoo	 frame	

who	 frame	

amI	 frame	

amI	 frame	

amI	 frame	
procedure amI is recursive
(calls itself)

example
call chain

example
stack

What could go wrong?

•  The programmer needs to think about bits even
though C deals in terms of variables, functions, data
structures, etc. (not bits)
–  If arr is an array of 10 elements, arr[30] accesses

some other undefined thing
–  Storing 8675309 where a return address should

be makes a function return start executing stuff
that may not be code

–  . . .
•  Correct C programs can’t do these things, but nobody

is perfect
•  On the plus side, there is no “unnecessary overhead”

like keeping array lengths around and checking them!
12

Hello, World!

•  Code:
#include<stdio.h>
int main(int argc, char**argv) {
 printf("Hello, World!\n");
 return 0;

}
–  Compiling: gcc -std=c11 -o hello hello.c (normally add -

Wall -g)
–  Running: ./hello

•  Intuitively: main gets called with the command-line args
and the program exits when it returns

•  But there is a lot going on in terms of what the language
constructs mean, what the compiler does, and what
happens when the program runs

•  We will focus mostly on the language
13

Quick explanation

#include <stdio.h>
int main(int argc, char**argv) {
 printf("Hello, World!\n");

 return 0;
}

•  #include finds the file stdio.h (from where?) and includes its
entire contents (stdio.h describes printf, stdout, and more)

•  A function definition is much like a Java method (return type,
name, arguments with types, braces, body); it is not part of a
class and there are no built-in objects or “this”

•  An int is like in Java, but its size depends on the compiler (it is
32 bits on most mainstream Linux machines, even x86-64 ones)

•  main is a special function name; every full program has one
•  char** is a long story…

14

Pointers

•  Think address, i.e., an index into the address-space array
•  If argv is a pointer, then *argv returns the pointed-to value
•  So does argv[0]
•  And if argv points to an array of 2 values, then argv[1]

returns the second one (and so does *(argv+1) but the +
here is funny)

•  People like to say “arrays and pointers are the same thing
in C”. This is not true. The two are very closely related but
are different.

•  Type syntax: T* describes either
a.  NULL (seg-fault if you dereference it)
b.  A pointer holding the address of some number of

contiguous values of type T
•  How many? You have to already know somehow; pointers

have no length primitive (e.g., argc is number of char*
argv points to)

15

& “address of”
* “value at address” or
 “dereference”

Pointers, continued

•  So reading right to left: argv (of type char**) holds a
pointer to (one or more) pointers to (one or more) char

•  Fact #1 about main: argv holds a pointer to j pointers to
(one or more) char(s) where argc holds j

•  Common idiom: array lengths as other arguments
•  Fact #2 about main: For 0 ≤ i ≤ j where argc holds j, argv[i]

is an array of char(s) with last element equal to the
character ’\0’ (which is not ’0’)

•  Very common idiom: pointers to char arrays ending with
’\0’ are called strings.
–  The standard library relies on this idiom (e.g., strnlen)
–  The language relies on this idiom (e.g. string constants

like “Hello”)

16

(question from class)

•  If two individual pointees happen to be adjacent, can
I just access either pointee with either pointer?

•  No, this would be an incorrect C program (it might
work sometimes but behavior is undefined by the
standard and it will probably break)

•  e.g.

17

‘a’ ‘b’ ‘\0’ ‘x’ ‘y’ ‘\0’ …

char* g = “ab”;
char* h = “xy”;
g[2]; // okay
g[3]; // BUG! although it might return ‘x’

Let’s draw a picture of “memory”
when hello runs.

•  ./hello -n 374

•  assume 64-bit
machine

18

address data # bytes
0x04 (char*) 0x10 8
0x0c (char*) 0x22 8

…
0x10 ‘-’ 1
0x11 ‘n’ 1
0x12 ‘\0’ 1

…
0x22 ‘3’ 1
0x23 ‘7’ 1
0x24 ‘4’ 1
0x25 ‘\0’ 1

…
0x50 (argc) 2 4
0x54 (argv) 0x04 8

Rest of the story

#include<stdio.h>
int main(int argc, char**argv) {
 printf("Hello, World!\n");

 return 0;
}

•  printf is a function taking a string (a char*) (and often additional
arguments, which are formatted according to codes in the string)

•  "Hello, World!\n" evaluates to a pointer to a global, immutable
array of 15 characters (including ‘\n’ and the trailing ‘\0’)

•  printf writes its output to stdout, which is a global variable of type
FILE* defined in stdio.h
–  How this gets hooked up to the screen (or somewhere else)

is the library’s (nontrivial) problem
•  return in main is the program’s exit code; (caller can check, e.g.

in shell scripts with $?)

19

But wait, there’s more!

•  More features will be explored, starting in hw4
–  Accessing program command-line arguments

(argc and argv)
–  Other I/O functions (fprintf, fputs, fgets, fopen, …)
–  Strings – much ado about strings

•  Strings as arrays of characters (local and
allocated on the heap)

•  Updating strings, buffer overflow, ’\0’
•  String library (<string.h>)

20

