
CSE 374
Programming Concepts & Tools

Hal Perkins
Fall 2015

Lecture 16 – Version control and git

Where we are

•  Learning tools and concepts relevant to multi-file, multi-person,
multi-platform, multi-month projects

•  Today: Managing source code
–  Reliable backup of hard-to-replace information (i.e., sources)
–  Tools for managing concurrent and potentially conflicting

changes from multiple people
–  Ability to retrieve previous versions

•  Note: None of this has anything to do with code. Like make,
version-control systems are typically not language-specific.
–  Many people use version control systems for everything they

do (code, papers, slides, letters, drawings, pictures, . . .)
•  Traditional systems were best at text files (comparing

differences, etc.); newer ones work fine with others too
–  But be sure to check before storing videos & other media

2

Version-control systems

•  There are plenty: sccs, rcs, cvs (mostly historical);
subversion, git, mercurial, perforce, sourcesafe, …

•  Terminology and commands aren’t particularly
standard, but once you know one, the others aren’t
difficult – the basic concepts are the same

•  svn still is widely used – single central repository
•  git and mercurial: distributed version control

–  Same core ideas, but every user has a copy of the
repository; allows easy branching & merging for
large collaborations (e.g., linux kernel)

–  We’ll use git, which is very popular these days

3

What is git?

If that doesn’t fix it, git.txt contains the phone
number of a friend of mine who understands
git. Just wait through a few minutes of “It’s
really pretty simple, just think of branches
as…”; and eventually you’ll learn the
commands that will fix everything.

4

Git basics – general version

•  A project lives in a repository
•  Each user has their own copy of the repository
•  A user commits changes to her copy to save them
•  Other users can pull changes from that repository

Alice

Bob

Carol

R
R

R

5

Git basics – central repo (we’ll use)

•  Users have a shared repository
(called origin in the git literature, for
cse374 it is your group’s repository
on the CSE GitLab server)

•  Each user clones the repository
•  Users commit changes to their local

repository (clone)
•  To share changes, push them to

GitLab after verifying them locally
•  Other users pull from Gitlab to get

changes (instead of from each
other)

GitLab

Bob
Carol

R R R

Alice

R

6

Tasks

Learn the common cases; look up the uncommon ones.
In a production shop using git…
•  Create

–  a new repository/project (rare – once or twice a year)
–  a new branch (days to weeks; not in cse374, but used

in production shops for independent development)
–  a new commit (daily or more, each significant change)

•  Push to repo
–  regularly, when you want to back up or share work –

even with yourself on a different computer
•  Other operations as needed (check version history,

differences, …)

7

Repository access

A repository can be:
•  Local: specify repository directory root via a regular

file path name url (file:///path...)
•  Remote: lots of remote protocols supported (ssh,

https, …) depending on repository configuration
–  Specify user-id and machine
–  Usually need gitand ssh installed locally
–  Need authentication (use ssh key with GitLab)

•  cse374/HW6 use ssh access to remote GitLab server
•  Feel free to experiment with private, local repos or

private repos on gitlab

8

Getting started (GitLab)
•  Create local ssh keys (ssh keygen) and add to your

GitLab account (won’t have to type passwords once
this is done & only need to do it once)

•  Set up a repository (we’ll do this for you on hw6; if you
do it yourself you get to pick name, location)

+New Project (on gitlab dashboard)
•  Clone a working copy of the repo to your machine

 cd where-you-want-to-put-it
 git clone git@gitlab.cs.washington.edu:path/to/repo

–  url for above comes from gitlab page for your project

9

Routine git/GitLab local use

•  Edit a file, say stuff.c
•  Add file(s) to set to be saved in repo on next commit

 git add stuff.c
•  Commit all added changes

 git commit –m “reason/summary for commit”
•  Repeat locally until you want to push accumulated

commits to GitLab server to share with partner or for
backup…

10

git/GitLab use (sharing changes)

•  Good practice – grab any changes on server not yet
in local repo

 git pull
–  Also do this any time you want to merge changes

pushed by your partner
•  Test, make any needed changes, do git add / git

commit to get everything cleaned up locally
•  When ready, push accumulated changes to server

 git push
•  If push blocks because there are newer changes on

server, do a git pull, accept any merge messages,
cleanup, add/commit/push again

11

File rename/move/delete

•  Once files have been committed to gitlab repository,
need to tell git about any changes desired to git-
managed files

 git mv files
 git rm files

–  git will make the changes locally then make
corresponding changes to remote GitLab repo
when you push

–  If you use regular shell mv/rm commands, git will
give you all sorts of interesting messages when
you run git status and you will have to clean up J

12

Demo

13

Some examples

•  Update local copy to match GitLab copy
 git pull

•  Make changes
 git add file.c
 git mv oldfile.c newfile.c
 git rm obsolete.c

•  Commit changes to local repo
 git commit –m “fixed bug in getmem”

•  Examine changes
 git status (see uncommitted changed files, will also
 show you how to revert changes, etc.)
 git diff (see uncommitted changes in files)
 git log (see history of commits)

•  Update GitLab copy to reflect local changes
 git push 14

Conflicts

•  This all works great if there is one working copy.
•  But if two users make changes to their own local copies, the two

versions must be merged
–  git will merge automatically when you do a “git pull”
–  Usually successful if different lines or different files changed

•  If git can’t automatically merge, you need to fix manually
–  git will tell you which files have conflicts (git status)
–  Look in files, you will see things like

<<<<<<<< HEAD
for (int i=0; i<10; i++)
===============
for (int i=0; i<=10; i++)
>>>>>>>> master

–  Change these lines to what you actually want, then add/
commit the changes (and push if you want to)

15

git gotchas

•  Do not forget to add/commit/push files or your group
members will be very unhappy

•  Keep in the repository exactly (and only) what you need to
build the application!
–  Yes: foo.c foo.h Makefile
–  No: foo.o a.out foo.c~
–  You don’t want versions of .o files etc.:

•  Replaceable things have no value
•  They change a lot when .c files change a little
•  Developers on other machines can’t use them

•  A simple .gitignore file can be used to tell git which sorts of
files should not be tracked (*.o, *~, .DS_Store (OS X))
–  Goes in top-level repo directory; useful to push to

GitLab and share
16

Summary

•  Another tool for letting the computer do what it’s good at:
–  Much better than manually emailing files, adding dates

to filenames, etc.
–  Managing versions, storing the differences
–  Keeping source-code safe
–  Preventing concurrent access, detecting conflicts

•  git/Gitlab tutorial for CSE 374 on website
•  Links to GitLab on website and in CSE 374 tutorial
•  Full git docs and book are online, free, downloadable

–  Beware of complexity – much of what they describe is
beyond what we need for CSE 374; keep it simple

17

