
CSE 374
Programming Concepts & Tools

Hal Perkins
Fall 2015

Lecture 10 – C: the heap and manual memory management

Administrivia

•  Midterm exam Monday(!)
–  Topics – everything up to hw4 (including gdb)

•  These slides (malloc) are for next hw and final
–  Old exams on web now for review
–  Review Q&A Sunday. 1pm (SAV 264?)

•  Remember to switch to standard time 2am Sun.
•  HW4 reminders

–  (Re-)read the specifications (assignment) carefully
–  clint: pay attention to most everything; questions, about

edge cases, odd warnings, etc.? Discussion board
•  Watch late days – several people have used up all but 1

already – and a couple of people are out(!)
–  Gradebook entry gives number we think you have left

2

Pointer syntax

•  A review (for completeness)
•  Declare a variable to have a pointer type:

T * x; or T* x; or T *x; or T*x;
 (where T is a type and x is a variable)

•  An expression to dereference a pointer:
*x (or more generally *e)

 where e is an expression
•  C’s designers used the same character on purpose,

but declarations (create space) and expressions
(compute a value) are totally different things

3

Heap allocation

•  So far, all of our ints, pointers, and arrays, have been
stack-allocated, which in C has two huge limitations:
–  The space is reclaimed when the allocating function

returns
–  The space required must (normally) be a constant (only

an issue for arrays)
•  Heap-allocation has neither limitation
•  Comparison: new T(...) in Java does all this:

–  Allocate space for a T (exception if out-of-memory)
–  Initialize the fields to null or 0
–  Call the user-written constructor function
–  Return a reference (hey, a pointer!) to the new object

•  And the reference has a specific type: T
•  In C, these steps are almost all separated

4

malloc, part 1

•  malloc is “just” a library function: it takes a number,
heap-allocates that many bytes and returns a pointer
to the newly-allocated memory
–  Returns NULL on failure
–  Does not initialize the memory
–  You must cast the result to the pointer type you

want
–  You do not know how much space different values

need!
•  Do not do things like malloc(17) !

5

malloc, part 2

•  malloc is “always” used in a specific way:
(T*)malloc(e * sizeof(T))

•  Returns a pointer to memory large enough to hold an
array of length e with elements of type T

•  It is still not initialized (use a loop)!
–  Underused friend: calloc (takes e and sizeof(T) as

separate arguments, initializes everything to 0)
•  malloc returns an untyped pointer (void*); the cast

(T*) tells C to treat it as a pointer to a block of type T
–  If allocation fails (extremely rare, but can happen),

returns NULL. Programs must always check.

6

Half the battle

•  We can now allocate memory of any size and have it “live”
forever

•  For example, we can allocate an array and use it
indefinitely

•  Unfortunately, computers do not have infinite memory so
“living forever” could be a problem

•  Java solution: Conceptually objects live forever, but the
system has a garbage collector that finds unreachable
objects and reclaims their space

•  C solution: You explicitly free an object’s space by passing
a pointer to it to the library function free

•  Freeing heap memory correctly is very hard in complex
software and is the disadvantage of C-style heap-
allocation

7

Everybody wants to be free(d once)

int * p = (int*)malloc(sizeof(int));
p = NULL; /* LEAK! */
int * q = (int*)malloc(sizeof(int));
free(q);
free(q); /* HYCSBWK */
int * r = (int*)malloc(sizeof(int));
free(r);
int * s = (int*)malloc(sizeof(int));
*s = 19;
r = 17; / HYCSBWK, but maybe *s==17 ?! */

•  Problems much worse with functions:
–  f returns a pointer; (when) should f’s caller free the

pointed-to object?
–  g takes two pointers and frees one pointed-to object.

Can the other pointer be dereferenced?
8

The Rules

•  For every run-time call to malloc there should be one run-
time call to free

•  If you “lose all pointers” to an object, you can’t ever call
free (a leak)!

•  If you “use an object after it’s freed” (or free it twice), you
used a dangling pointer!

•  Note: It’s possible but rare to use up too much memory
without creating “leaks via no more pointers to an object”

•  Interesting side-note: The standard-library must
“remember” how big the object is (but it won’t tell you)
–  We will explore this further…

 later ….

9

Valgrind

•  Ideally there are no memory leaks, dangling pointers,
or other bugs, but how do we check?

•  valgrind program program-arguments
–  Runs program with program-arguments
–  Catches pointer errors during execution
–  At end, prints summary of heap usage, including

details of any memory leaks at termination
•  option --leak-check=full provides more details –

use it
•  But it really slows down execution

–  But still a fantastic diagnostic, debugging tool
•  Valgrind has other options/tools but memory check is

the default and most commonly used
10

Processes and the heap

•  Recall: a process (running program) has a single
address space (code, static/global, heap, stack)

•  When a program terminates the address space is
released by the OS
–  So any allocated memory is “reclaimed” since it no

longer exists
•  Good practices

–  OK to rely on this if appropriate, but…
–  Any data structure package that allocates storage

should normally provide routines to free it so client
code can release the space if the client wants to

11

