
CSE 374
Programming Concepts & Tools

Hal Perkins
Fall 2015

Lecture 9 – C: Locals, lvalues and rvalues, more pointers

The story so far…

•  The low-level execution model of a process (one address
space)

•  Basics of C:
–  Language features: functions, pointers, arrays
–  Idioms: Array-lengths, strings with ’\0’ terminators
–  Control constructs and int guards

•  Today, more features:
–  Local declarations
–  Storage duration and scope
–  Left vs. right expressions; more pointers
–  Dangling pointers
–  Stack arrays and implicit pointers (confusing)

•  Later: structs; the heap and manual memory management
2

Storage, lifetime, and scope

•  At run-time, every variable needs space
–  When is the space allocated and deallocated?

•  Every variable has scope
–  Where can the variable be used (unless another

variable shadows it)?
•  C has several answers (with inconsistent reuse of the

word static)
•  Some answers rarely used but understanding storage,

lifetime, and scope is important
•  Related: Allocating space is separate from initializing that

space
–  Use uninitialized bits? Hopefully crash but who knows?
–  Unlike Java, which zeros out objects and complains

about uninitialized locals
3

Storage, lifetime, and scope

•  Global variables allocated before main, deallocated after main.
Scope is entire program
–  Usually bad style, kind of like public static Java fields
–  But can be OK for truly global data like conversion tables,

physical constants, etc.
•  Static global variables like global variables but scope is just that

source file, kind of like private static Java fields
–  Related: static functions cannot be called from other files

•  Static local variables lifetime like global variables (!) but scope is
just that function, rarely used (We won’t use them)

•  Local variables (often called automatic) allocated “when
reached” deallocated “after that block”, scope is that block
–  With recursion, multiple copies of same variable (one per

stack frame/function activation)
–  Like local variables in Java

4

lvalues vs rvalues

•  In intro courses we are usually fairly sloppy about the
difference between the left side of an assignment and the
right. To “really get” C, it helps to get this straight:
–  Law #1: Left-expressions get evaluated to locations

(addresses)
–  Law #2: Right-expressions get evaluated to values
–  Law #3: Values include numbers and pointers

(addresses)
•  The key difference is the “rule” for variables:

–  As a left-expression, a variable is a location and we are
done

–  As a right-expression, a variable gets evaluated to its
location’s contents, and then we are done

–  Most things do not make sense as left expressions
•  Note: This is true in Java too

5

Function arguments

•  Storage and scope of arguments is like for local variables
•  But initialized by the caller (“copying” the value)
•  So assigning to an argument has no affect on the caller
•  But assigning to the space pointed-to by an argument

might
void f() { int g(int x) {
 int i=17; x = x+1;
 int j=g(i); return x+1;
 printf("%d %d",i,j); }
}

6

Function arguments

•  Storage and scope of arguments is like for local variables
•  But initialized by the caller (“copying” the value)
•  So assigning to an argument has no affect on the caller
•  But assigning to the space pointed-to by an argument

might
void f() { int g(int* p) {
 int i=17; *p = (*p) + 1;
 int j=g(&i); return (*p) + 1;
 printf("%d %d",i,j); }
}

7

Function arguments

•  Storage and scope of arguments is like for local variables
•  But initialized by the caller (“copying” the value)
•  So assigning to an argument has no affect on the caller
•  But assigning to the space pointed-to by an argument

might
void f() { int g(int* p) {
 int i=17; int k = *p;
 int j=g(&i); int *q = &k;
 printf("%d %d",i,j); *p = *q;
} (*p) = (*q) + 1;

 return (*q) + 1;
 }

8

Pointers to pointers to …

•  Any level of pointer makes sense:
–  Example: argv, *argv, **argv
–  Same example: argv, argv[0], argv[0][0]

•  But &(&p) makes no sense (&p is not a left-expression,
the value is an address but the value is in no-particular-
place)

•  This makes sense (well, at least it’s legal C):
void f(int x) {
 int*p = &x;
 int**q = &p;
 ... can use x, p, *p, q, *q, **q, ...
}

•  Note: When playing, you can print pointers (i.e.,
addresses) with %p (just numbers in hexadecimal)

9

Dangling pointers

int* f(int x) {
 int *p;
 if(x) {
 int y = 3;
 p = &y; /* ok */
 } /* ok, but p now dangling */

 /* y = 4 does not compile */
 p = 7; / could CRASH but probably not */
 return p; /* uh-oh, but no crash yet */

}
void g(int *p) { *p = 123; }
void h() {

 g(f(7)); /* HOPEFULLY YOU CRASH (but maybe not) */
}

10

Arrays and Pointers

•  If p has type T* or type T[] :
–  *p has type T
–  If i is an int, p+i refers to the location of an item of type

T that is i items past p (not +i storage locations unless
each item of type T takes up exactly 1 unit of storage)

–  p[i] is defined to mean *(p+i)
–  if p is used in an expression (including as a function

argument) it has type T*
•  Even if it is declared as having type T[]
•  One consequence: array arguments are always

“passed by reference” (as a pointer), not “by
value” (which would mean copying the entire array
value)

11

Arrays revisited

•  “Implicit array promotion”: a variable of type T[] becomes a variable
of type T* in an expression

void f1(int* p) { *p = 5; }

int* f2() {

 int x[3]; /* x on stack */
 x[0] = 5;

/* (&x)[0] = 5; wrong */
 *x = 5;
 *(x+0) = 5;
 f1(x);

/* f1(&x); wrong – watch types! */
/* x = &x[2]; wrong – x isn’t really a pointer! */

 int *p = &x[2];
 return x; /* wrong – dangling pointer – but type correct */

}
12

