CSE 374
Programming Concepts & Tools

Hal Perkins
Fall 2015
Lecture 5 — Regular Expressions, grep, Other Ultilities

Where we are

« Done learning about the shell and it’s bizarre
“programming language” (but pick up more on hw3)

» Today: Specifying string patterns for many utilities,
particularly grep and sed (also needed for hw3)
* Next: sed

* And then: a real programming language — C

Globbing vs Regular Expressions

« “Globbing” refers to shell flename expansion

« “Regular expressions” are a different but overlapping
set of rules for specifying patterns to programs like
grep. (Sometimes called “pattern matching”)

* More distinctions:
— Regular expressions as in CS/mathematics
— "Regular expressions” in grep
— “Extended regular expressions” in egrep
« Same as grep —-E
— Other variations in other programs...

Real Regular Expressions

« Some of the crispest, elegant, most useful CS theory out
there. What computer scientists know and ill-educated
hackers don't (to their detriment).

« A regular expression p may “match” a string s.
° If p =
— a, b, ... matches the single character (basic reg. exp.)

— P4Po;s .-, if we can write s as s,s,, where p, matches s,,
p, matches s,.

— P4 | Py --. If py matches s or p, matches s
* (in egrep, for grep use \|)

— p*, ifthere is an i = 0 such that p...p (i times) matches s.
« (fori =0, matches the zero-character string ¢)

Conveniences

* Most regular expressions allow various abbreviations
for convenience, but these do not make the language
any more powerful

— pt is pp*

— p? is (¢|p)

— [zd-h] is z|d|e|f|g]|h

— [*a-z] and . are more complex, but just technical

conveniences (entire character set except for
those listed, or a single character .)

— p{n} is p...p (p repeated n times)
— p{n,} is p...pp* (p repeated n or more times)
— p{n,m} is p repeated n through m times

grep — beginning and end of lines

« By default, grep matches each line against .*p.”

* You can anchor the pattern with * (beginning) and/or
$ (end) or both (match whole line exactly)

* These are still “real” regular expressions

*Is greedy

* For example, find sections in an xml file:
egrep '<foo>.*</foo>" stuff.xml

— The .* matches as much as possible, even over an
intermediate ‘</foo>’

— Use [*chars] or other regular expressions to
anchor the search so it matches less

« But that does not mean that .*p.* will match any string
— still need to match p.

Gotchas

* Modern (i.e., gnu) versions of grep and egrep use the
same regular expression engine for matching, but the
iInput syntax is different for historical reasons

— For instance, \{ for grep vs { for egrep
— See grep manual sec. 3.6

* Must quote patterns so the shell does not muck with
them — and use single quotes if they contain $ (why?)

« Must escape special characters with \ if you need
them literally: \. and . are very different

— But inside [] many more characters are treated
literally, needing less quoting (\ becomes a literal!)

8

Previous matches — back references

« Up to 9 times in a pattern, you can group with (p) and
refer to the matched text later!

— (Need backslashes in sed.)

* You can refer to the text (most recently) matched by
the nt" group with \n.

« Simple example: double-words *\([a-zA-Z]*"\\1$
* You cannot do this with actual regular expressions;
the program must keep the previous strings.

— Especially useful with sed because of
substitutions.

Other utilities

« Some very useful programs you can learn on your
own:

— find (search for files, e.qg., find /usr -name words)

— diff (compare two files’ contents; output is easy for
humans and programs to read (see patch))

 Also:

— For many programs the -r flag makes them
recursive (apply to all files, subdirectories,
subsubdirectories, ...).

— So “delete everything on the computer” is
cd/; rm-rf * (be careful!)

10

NEW SKILL T CoNCoCT | | HER ON VACATION !

OH NO! THE KILLER || BUT TD FIND THEM WE'D HAVE TO SEARCH

(WHENEYER T LEARV A | | MUST HAVE ROLLOWED)| | THROUGH 200 MB OF EMAILS LOOKING FOR
SOMETHING FORMATTED LIKE AN ADDRESS!

ELABORATE. FANTASY | /
SCENARIOS WHERE (T _ ~— [T5 HOPELESS!
| LETS ME. SAVE THE DAY. %

@m@wmw/

fr §

T KNOW REGUAR
EXPRESSIONS.

-

ufil i}

11

