
CSE 374
Programming Concepts & Tools

Hal Perkins
Fall 2015

Lecture 2 – Processes, Programs, the Shell
(& emacs)

News
•  > 20 new students registered since Mon. Welcome!!
•  HW0/klaatu/vmware: getting closer

–  Klaatu and vmware distribution accounts (not the
same thing) for most students should be ok now –
will add newest students shortly.

–  Turn in hw0 when done. If your joined the class
late we’ll sort out late day issues later if needed.

•  “do your own work” != “don’t talk to anyone” !!!
•  Please use discussion board, or mail to cse374-staff,

not mail to individual TAs/instructor.
•  Office hour etiquette: no camping please. Goal is to

help you get unstuck so you can make progress, not
enough capacity for a study group/work session.

2

Where we are

•  It’s like we started over using the computer from scratch
•  All we can do is run dinky programs at the command-line
•  But we are learning a model (a system is files, processes,

and users) and a powerful way to control it (the shell)
•  If we get the model right, hopefully we can learn lots of

details quickly
•  Today:

–  The rest of the model briefly: Processes and Users
–  More programs (ps, chmod, kill, . . .)
–  Special shell characters (*, ~, . . .)
–  Text editing (particularly emacs)

3

Users

•  There is one file-system, one operating system, one or
more CPUs, and multiple users

•  whoami
•  ls -l and chmod (permissions), quota (limits)

–  Make your homework unreadable by others!
•  /etc/passwd (or equivalent) guides the login program:

–  Correct username and password
–  Home directory
–  Which shell to open (pass it the home directory)
–  The shell then takes over, with startup scripts

(e.g., .bash_profile, .bashrc). (ls -a)
•  One “superuser” a.k.a. root. (Change passwords, halt

machine, change system directories, add/remove user
accounts, . . .)

4

Programs & the Shell

•  A program is a file that can be executed
•  Almost all system commands are programs
•  The shell is itself a program

–  Reads lines you type in & carries them out
–  Normally finds the named program and runs it

•  A few commands are shell “built-ins” that the
shell executes itself because they change the
state of the shell. Obvious example: cd

–  After the named program runs it exits and the shell
reads the next command

–  More to this story to come…

5

Processes

•  A running program is called a process. An application
(e.g., emacs), may be running as 0, 1, or 57 processes at
any time

•  The shell runs a program by “launching a process” waiting
for it to finish, and giving you your prompt back.
–  What you want for ls, but not for emacs.
–  &, jobs, fg, bg, kill — job control
–  ps, top

•  Each process has private memory and I/O streams
•  A running shell is just a process that kills itself when

interpreting the exit command
•  (Apologies for aggressive vocabulary, but we’re stuck with

it for now.)

6

Standard I/O streams

•  Every process has 3 standard streams: stdin (input),
stdout (output), stderr (error messages)

•  Default is keyboard (stdin), terminal window (stdout,
stderr)

•  Default behavior is to read from stdin, write normal
output to stdout, write diagnostic output to stderr
–  Many programs accept command-line arguments

naming files to read
–  If not supplied, just read stdin
–  Also ways to redirect stdin, stdout, stderr. Later…

7

That’s most of a running system

•  File-system, users, processes
•  The operating system manages these
•  Processes can do I/O, change files, launch other

processes.
•  Other things: Input/Output devices (monitor,

keyboard, network)
•  GUIs don’t change any of this, but they do hide it a bit
•  Now: Back to the shell. . .

8

The shell so far

•  So far, our view of the shell is the barest minimum:
–  builtins affect subsequent interpretations
–  New builtin: source
–  Otherwise, the first “word” is a program run with

the other “words” passed as arguments
•  Programs interpret arguments arbitrarily, but

conventions exist

9

Complicating the shell

•  But you want (and bash has) so much more:
–  Filename metacharacters
–  Pipes and Redirections (redirecting I/O from and

to files)
–  Command-line editing and history access
–  Shell and environment variables
–  Programming constructs (ifs, loops, arrays,

expressions, …)
•  All together, a very powerful feature set, but awfully

inelegant

10

Filename metacharacters - globbing

•  Much happens to a command-line to turn it into a “call
program with arguments” (or “invoke builtin”)

•  Certain characters can expand into (potentially) multiple
filenames:
–  ~foo – home directory of user foo
–  ~ – current user’s home directory (same as ~$user or

‘whoami‘).
–  * (by itself) – all files in current directory
–  * – match 0 or more filename characters
–  ? – match 1 filename character
–  [abc], [a-E], [^a], . . .more matching

•  Remember, this is done by the shell before the program
sees the resulting arguments

11

Filename metacharacters: why

•  Manually, you use them all the time to save typing.
•  In scripts, you use them for flexibility. Example: You

do not know what files will be in a directory, but you
can still do: cat * (though a better script would skip
directories)

•  But what if it’s not what you want? Use quoting ("*" or
'*') or escaping (*)

•  The rules on what needs escaping where are very
arcane

•  A way to experiment: echo
–  echo args. . . copies its arguments to standard

output after expanding metacharacters

12

History

•  The history builtin
•  The ! special character

–  !!, !n, !abc, . . .
–  Can add, substitute, etc.

•  This is really for fast manual use; not so useful in

scripts

13

Aliases

•  Idea: Define a new command that expands to something
else (not a full script)

•  Shell builtin command:
alias repeat=echo
alias dir=ls
alias hello="echo hello"
alias rm="rm -i" % for cautious users
alias % list existing aliases

•  Often put in a file read by source or in a startup file read
automatically

•  Example: your .bashrc – feel free to change

14

Bash startup files

•  Bash reads (sources) specific files when it starts up. Put
commands here that you want to execute every time you
run bash

•  Which file gets read depends on whether bash is starting
as a “login shell” or not
–  Login shell: ~/.bash_profile (or others – see bash

documentation)
–  Non-login shell: ~/.bashrc (or others if not found)

•  Suggestion: Include the following in your .bash_profile file
so the commands in .bashrc will execute regardless of
how the shell starts up

 if [-f ~/.bashrc]; then source ~/.bashrc; fi

15

Where we are

Features of the bash “language”:
1.  builtins
2.  program execution
3.  filename expansion (Pocket Guide 23-25, 1st ed

22-23)
4.  history & aliases

5.  command-line editing
6.  shell and environment variables
7.  programming constructs

 But file editing is too useful to put off. . . so a detour to
emacs (which shares some editing commands with bash)

16

What is emacs?

•  A programmable, extensible text editor, with lots of
goodies for programmers

•  Not a full-blown IDE but much “heavier weight” than vi
•  Top-6 commands:

C-g
C-x C-f
C-x C-s, C-x C-w
C-x C-c
C-x b
C-k, C-w, C-y, . . .

•  Take the emacs tutorial to get the hang of the basics
•  Everyone should know this at least a little – emacs editing

shortcuts are common in other Linux programs
•  Customizable with elisp (starting with your .emacs)

17

Command-line editing

•  Lots of control-characters for moving around and
editing the command-line. (Pocket Guide page 28,
emacs-help, and Bash reference manual Sec. 8.4.)

•  They make no sense in scripts
•  Gotcha: C-s is a strange one (stops displaying output

until C-q, but input does get executed)
•  Good news: many of the control characters have the

same meaning in emacs (and bash has a vi “mode”
too)

18

Summary

As promised, we are flying through this stuff!
•  Your computing environment has files, processes, users, a

shell, and programs (including emacs)
•  Lots of small programs for files, permissions, manuals, etc.
•  The shell has strange rules for interpreting command-lines.

So far:
–  Filename expansion
–  History expansion

•  The shell has lots of ways to customize/automate. So far:
–  alias and source
–  run (i.e., automatically source) .bash_profile or .bashrc

when shell starts

Next: I/O Redirection & stream details, Shell Programming

19

