Where we are

• Learning tools and concepts relevant to multi-file, multi-person, multi-platform, multi-month projects
• Today: Managing source code
 – Reliable backup of hard-to-replace information (i.e., sources)
 – Tools for managing concurrent and potentially conflicting changes from multiple people
 – Ability to retrieve previous versions
• Note: None of this has anything to do with code. Like make, version-control systems are typically not language-specific.
 – Many people use version control systems for everything they do (code, papers, slides, letters, drawings, pictures, . . .)
 • Traditional systems were best at text files (comparing differences, etc.); newer ones work fine with others too
 – But be sure to check before storing videos & other media
Version-control systems

• There are plenty: scss (historical), rcs (mostly historical), cvs (built on top of rcs), subversion, git (much more distributed), mercurial, sourcesafe, …

• The terminology and commands aren’t particularly standard, but once you know one, the others aren’t difficult – the basic concepts are the same

• svn was the most widely used for the last decade and is still common – we’ll learn basic svn

• git and mercurial are the hot new thing – distributed version control
 – Same core ideas, but more complicated to support independent development and merging of projects
The setup

• There is a svn repository, where files (and all past versions) are reliably stored
 – Hopefully the repository files are backed up, but that’s not svn’s problem
• You do not edit files in the repository directly. Instead:
 – You check-out a working copy and edit it
 – You commit changes back to the repository
• You use the svn program to perform any operations that affect the repository
• One repository may hold many projects. A subversion repository is just a database of projects and files.
 – Looks like a filesystem tree of project directories
Tasks

Learn the common cases; look up the uncommon ones.
In a production shop…

• Create
 – a repository (rare – every few years)
 – a new project (infrequent – once or twice a year)
 – a working copy of a project (every few weeks or months?)

• Working with files
 – Get updates, add or remove files, commit changes to repository (daily)
 – Check version history, differences (as needed)

• Branches, locks, watches, others (every now and then)

Basic command structure is the same for all

 svn svn-options cmd cmd-options files…
Repository access

A repository can be:

• Local: specify repository directory root via a regular file path name url (file:///path...)

• Remote: lots of remote protocols supported (ssh, https, …) depending on repository configuration
 – Specify user-id and machine
 – Usually need svn and ssh installed locally
 – Need authentication (ssh password or other)

• HW6 uses https access to remove server

• Feel free to experiment with private, local repos
Getting started

• Set up a repository (we’ll do this for you on hw6; if you do it yourself you get to pick name, location)
 svnadmin create path/svnrepos
• Put initial version of project directory in repository (do this once!)
 svn import projdir svn://path/svnrepos/proj -m msg
 – Commands that update a repository require a message (msg) that should briefly document the change
 – Once a project is imported, never use the original directory again (never! We really mean that!)
 – Path depends on kind of access (local/remote)
• Check out a copy of the project to a working directory
 cd working-directory
 svn checkout svn://path/svnrepos/proj proj
 – Working directory remembers repository location and password for future checkin, update, etc.
• HW6: path to repository server is on cse server – see writeup
File manipulation

• Add files with `svn add` (won’t be in repository if you don’t)
• Bring local working copy up to date with `svn update` (get changed files from repository)
• Commit local changes with `svn commit`
 – Any number of files including subdirectories recursively if no filename specified
 – Files not actually added to repository until commit
• Commit messages are mandatory
 – `-m “short message”`
 – `-F filename-containing-message`
 – Else pop up editor if `EDITOR` or `VISUAL` environment variable is set
 – Else complain
Some examples

- Update local working directory to match repository
 `svn update`
- Make changes (do via `svn`, not `mv`, `cp`, so repository will also change on commit)

 `svn add file.c`

 `svn move oldfile.c newfile.c`

 `svn delete obsoletefile`
- Commit changes

 `svn commit -m "this is much better, fixes bug 31415"`
- Examine your changes

 `svn status`

 `svn diff file.c`

 `svn revert file.c`
Conflicts

• This all works great if there is one working-copy. With multiple working-copies there can be conflicts:
 1. Your working-copy checks out version 17 of foo
 2. You edit foo
 3. Somebody else commits a new version (18) of foo
• Subversion tries to merge changes automatically; if it can’t you must resolve the conflict. If svn commit fails:
 – Do svn update to get repository version and attempt merge
 • “G” means the automatic merge succeeded
 • “C” means you have to resolve the conflict
 – Merging is line-based, which is why svn is better for text files
 – Conflicts indicated in the working-copy file (search for <<<<<<<<)
 – Recent versions of svn handle more of this automatically or interactively
svn gotchas

• Do not forget to add files or your group members will be very unhappy.

• Keep in the repository *exactly* (and *only*) what you need to build the application!
 – Yes: foo.c foo.h Makefile
 – No: foo.o a.out
 – You don’t want versions of .o files etc.:
 • Replaceable things have no value
 • They change a lot when .c files change a little
 • Developers on other machines can’t use them
Summary

- Another tool for letting the computer do what it’s good at:
 - Much better than manually emailing files, adding dates to filenames, etc.
 - Managing versions, storing the differences
 - Keeping source-code safe
 - Preventing concurrent access, detecting conflicts

- svn: full documentation is online, free, downloadable
http://svnbook.red-bean.com/
 - Chapters 1 & 2 have most of what you’ll need