CSE 374
Programming Concepts & Tools

Hal Perkins
Winter 2011
Lecture 16 — Version control and svn




Where we are

e Learning tools and concepts relevant to multi-file, multi-person,
multi-platform, multi-month projects.

 Today: Managing source code
— Reliable backup of hard-to-replace information (i.e., sources)

— Tools for managing concurrent and potentially conflicting
changes from multiple people

— Ability to retrieve previous versions

* Note: None of this has anything to do with code. Like make,
version-control systems are typically not language-specific.

— Many people use version control systems for everything they
do (code, papers, slides, letters, drawings, pictures, . . .)

» Traditional systems are best at text files (comparing
differences, etc.); newer ones are better with others too.



Version-control systems

 There are plenty: scss (historical), rcs (mostly
historical), cvs (built on top of rcs), subversion, git
(much more distributed), mercurial, sourcesafe, ...

 The terminology and commands aren’t particularly
standard, but once you know one, the others aren’t
difficult — the basic concepts are the same

« cvs had the biggest mind-share for about a decade
(particularly in the open-source community)

e sSvn improves on several cvs shortcomings and Is
widely used — we’ll learn basic svn

e git and mercurial are the hot new thing — distributed
version control — but core ideas are the same



The setup

 There is a svn repository, where files (and past versions)
are reliably stored.

— Hopefully the repository files are backed up, but that’s
not svn’s problem.

* You do not edit files in the repository directly. Instead:
— You check-out a working copy and edit it.
— You commit changes back to the repository.

e You use the svn program to perform any operations that
need the repository.

* One repository may hold many projects. A subversion
repository is just a database of projects and files.

— Looks like a filesystem tree of project directories



Tasks

Learn the common cases; look up the uncommon ones.
In a production shop...
« Create
— arepository (rare — every few years)
— a new project (infrequent — once or twice a year)
— a working copy of a project (every few weeks or months?)
 Working with files

— Get updates, add or remove files, commit changes to
repository (daily)

— Check version history, differences (as needed)
* Branches, locks, watches, others (every now and then)
Basic command structure is the same for all
svn svn-options cmd cmd-options files...



Repository access

A repository can be:

« Local: specify repository directory root via a regular
file path name url

 Remote: specify user-id and machine

— Must have svn and ssh installed locally

— Need authentication (ssh password or other)
e Suggestion: experiment on a local machine

 Next homework project will use remote access to a
server



Getting started

e Set up a repository (your choice of name, location; we’ll do this
for you on hweo)

svhadmin create path/svnrepos
« Put initial version of project directory in repository
svn import projdir svn://path/svnrepos/proj -m msg

— Commands that update a repository require a message
(msg) that should briefly document the change

— Once a project is imported, never use the original directory
again (never! We really mean that!)

— Path depends on kind of access (local/remote)
 Check out a copy of the project to a working directory
cd working-directory
svn checkout svn://path/svnrepos/proj proj

— Working directory remembers repository location for future
checkin, update, etc.

« HWAG6: path to repository server is different — see writeup



File manipulation

 Add files with svn add

* Bring local working copy up to date with svn update (get
changed files from repository)

« Commit local changes with svn commit

— Any number of files including subdirectories recursively
If no filename specified

— Files not actually added to repository until here
« Commit messages are mandatory

— -m “short message”

— -F filename-containing-message

— Else pop up editor if EDITOR or VISUAL environment
variable is set

— Else complain



Some examples

« Update local working directory to match repository
svn update

 Make changes (use svn instead of local file commands so
repository will also change on commit)

svn add file.c

svn move oldfile.c newfile.c

svn delete obsoletefile
« Commit changes

svn commit -m “this is much better”
 Examine your changes

svn status

svn diff file.c

svn revert file.c



Conflicts

 This all works great if there is one working-copy. With multiple
working-copies there can be conflicts:

1. Your working-copy checks out version 17 of foo
2. You edit foo
3. Somebody else commits a new version (18) of foo

« Subversion tries to merge changes automatically; if it can’t you
must resolve the conflict. If svn commit fails:

— Do svn update to get repository version and attempt merge
* “G” means the automatic merge succeeded
« “C” means you have to resolve the conflict

— Merging is line-based, which is why svn is better for text
files

— Conflicts indicated in the working-copy file (search for
<<<<<<)

— Newer versions of svn handle more of this automatically or
Interactively

10



svn gotchas

Do not forget to add files or your group members will
be very unhappy.

o Keep in the repository exactly (and only) what you
need to build the application!

— Yes: foo.c foo.h Makefile

— No: foo.0 a.out

— You don’t want versions of .o files:
* Replaceable things have no value
 They change a lot when .c files change a little
* Developers on other machines can’t use them

11



Summary

* Another tool for letting the computer do what it's good
at:

— Much better than manually emailing files, adding
dates to filenames, etc.

— Managing versions, storing the differences
— Keeping source-code safe.
— Preventing concurrent access, detecting conflicts.

12



