
 CSE 374 Final Exam 3/17/11

 Page 1 of 14

Name ________________________________

Do not write your id number or any other confidential information on this page.

There are 8 questions worth a total of 100 points. Please budget your time so you get to
all of the questions. Keep your answers brief and to the point.

You may have a sheet of hand-written notes plus the notes from the midterm if you
brought them. Other than that, the exam is closed book, closed notes, closed laptops,
closed twitter, closed telepathy, etc.

Please wait to turn the page until everyone is told to begin.

 CSE 374 Final Exam 3/17/11

 Page 2 of 14

Score _________________ / 100

1. ______ / 12

2. ______ / 8

3. ______ / 22

4. ______ / 14

5. ______ / 12

6. ______ / 12

7. ______ / 12

8. ______ / 8

 CSE 374 Final Exam 3/17/11

 Page 3 of 14

Question 1. (12 points) (testing) In Homework 5, many solutions included a function
to add or insert a new word into the trie, creating appropriate strings and nodes as needed
(something like insert(char *word, struct tnode *trie)). For this problem,
describe two appropriate black-box tests and two appropriate white-box tests for this
function. For each test, briefly describe the test setup or inputs and the expected output
or results to be checked or verified. You do not need to write any actual code – just
describe the tests.

The question continues on the next page to give you plenty of room to write, but don’t
feel obligated to use all the space. Brief and to the point is good.

(a) Describe two different black-box tests that you could use to test that the add/insert
operation works properly. The tests must check different things – you can’t just describe
the same test twice with different data.

Black-box test (i) Setup or input:

Expected result(s):

Black-box test (ii) Setup or input:

Expected result(s):

(continued on next page)

 CSE 374 Final Exam 3/17/11

 Page 4 of 14

Question 1. (cont)

(b) Describe two different white-box tests you could use to test the add/insert operation.
As before, the different tests must check different things.

White-box test (i) Setup or input:

Expected result(s):

White-box test (ii) Setup or input:

Expected result(s):

 CSE 374 Final Exam 3/17/11

 Page 5 of 14

Question 2. (8 points) (debugging) Your partner has been working on the memory
manager project for a long, long time and seems to be stuck with some sort of bug. After
looking at it for a while, the problem seems to be somewhere in file mumble.c in
function chop_and_return. This function begins at line 100 in the file and parts of it
look something like this:

 struct free_node * chop_and_return(
 struct free_node *big_block, int size) {
 void * leftover_block;
 printf("entered chop_and_return\n");
 leftover_block = (void *)(big_block + size);
 ...
 printf("why don’t we ever get to here?\n");
 ...
 }

(Don’t worry about syntactic details in the above code – that’s not the point of the
question.)

When the program is run, the following output appears:

 entered chop_and_return
 Segmentation fault

How would you use gdb to find out what was causing the error and/or test your guesses
about what might be wrong? Please be specific – what would you do and in what order?
What commands would you enter? Note that the question does not ask you to figure out
what the bug is. We want to know how you would use gdb and related tools to find it.

 CSE 374 Final Exam 3/17/11

 Page 6 of 14

Question 3. (22 points) (C programming) A classic data structure is a binary search
tree (BST). This is a binary tree where each node in the tree holds a value. For any
particular node, all of the values in its left subtree are less than the value in that node and
all of the values in its right subtree are greater.

For this problem, we will work with a binary search tree whose nodes contain strings or,
more precisely, the data in each node is a pointer to a null-terminated C string. The tree
nodes are defined as follows:

 struct bstnode { /* node for a BST of strings: */
 char * str; /* string value in this node */
 struct bstnode *left; /* left subtree or NULL if empty */
 struct bstnode *right; /* right subtree or NULL if empty */
 };

You are to write code to insert a new string into the proper place in a binary search tree.
Do this in two steps in parts (a) and (b) below.

(a) (10 points) Complete the definition of the following function new_node so that it
returns a pointer to a newly allocated bstnode that references a newly allocated copy of
the given string. Some useful #includes are provided for you.

 #include <string.h>
 #include <stdlib.h>

 /* Return a pointer to a newly allocated bstnode holding */
 /* string s. The new node should reference a newly */
 /* allocated copy of the string s, and its left and right */
 /* subtree pointers should be initialized to NULL. */
 struct bstnode * new_node(char * s) {

 }

(continued on next page)

 CSE 374 Final Exam 3/17/11

 Page 7 of 14

Question 3. (cont.) (b) (12 points) Now, implement the following function to insert a
copy of a string s into the proper place in a binary search tree t. If a new node is needed
to hold s, use the new_node function from part (a) to create it. If string s already
occurs in the binary search tree, the function should not change the tree. The function
should return a pointer to the root of the (possibly modified) tree t.

You may define additional functions in your solution if they are helpful. Clarity and
understandability of your solution are much more important than cleverness or coding
tricks (particularly for the grader.) Assume that any #includes you need to access
standard C library functions are provided for you – you do not need to write them.

 /* Insert a copy of string s into the binary search tree t */
 /* and return a pointer to t. If s already appears in t, */
 /* the tree is not changed and a pointer to t is returned. */
 struct bstnode * insert(char *s, struct bstnode *t) {

}

 CSE 374 Final Exam 3/17/11

 Page 8 of 14

Question 4. (14 points) (make) We’re working on a program that has the following
collection of header and implementation files.

mumble.h

#ifndef MUMBLE_H
#define MUMBLE_H
...
#endif

generic.h

#ifndef GENERIC_H
#define GENERIC_H
...
#endif

mumble.c

#include "custom.h"
#include "mumble.h"
...

test.c

#include "mumble.h"
...
int main(...) { ... }

These source files are used to build an executable program named test, whose main
function is in test.c and which uses all of the functions defined in the above files.

The header file generic.h is not #included directly in any of the other source files.
Instead, it contains information that is used to produce the file custom.h at the time the
program is built (compiled), and that header file is #included in mumble.c, as shown
above.

To produce custom.h from generic.h, the following sed command needs to be
executed:

 sed 's/CITY/Seattle/g' generic.h > custom.h

Furthermore, this command should be re-executed to rebuild custom.h whenever
changes are made to generic.h.

(Note: You do not need to worry about changing the GENERIC_H symbols that are
#defined in generic.h. It’s fine if these are copied unchanged to custom.h.)

On the next page, write a Makefile that will build program test from the various
source files, recompiling or regenerating only the necessary files each time the program is
built.

You can remove this page for reference while working on the question if you wish.

(continued on next page)

 CSE 374 Final Exam 3/17/11

 Page 9 of 14

Question 4. (cont.) Write the contents of your Makefile here.

 CSE 374 Final Exam 3/17/11

 Page 10 of 14

Question 5. (12 points) (memory management) In this problem we’d like to write a
function to help us analyze the memory manager free list. You should assume that the
following struct gives the layout of the header part of each free list node.

 struct free_node {
 int size; /* number of bytes in this node, */
 /* including this header */
 struct free_node *next; /* next node on the free list, */
 /* or NULL if no more nodes. */
 };

Complete the following function so it scans the entire free list and prints the maximum
address occupied by any part of any block on the free list. (Note that the maximum
address occupied by a block is not the address of the header node or the beginning of the
block.) For this problem, assume that the free list blocks might not be sorted properly, so
the maximum address might be found in a block anywhere on the list. If the free list is
empty, the function should print 0x00000000 for the maximum address.

Hint: "0x%08x" is a suitable printf format string to print an int value using 8 hex
digits with "0x" in front.

 void print_max_address(struct free_node * free_list) {

 }

 CSE 374 Final Exam 3/17/11

 Page 11 of 14

Question 6. (12 points) (The dreaded traditional annoying inevitable C++ “what does
this print” question) What output is produced when this program is executed? It does
compile and execute with no warnings or errors using g++.

#include <iostream>
using namespace std;

class Bird {
public:
 virtual void noise() { cout << "mumble" << endl; }
 void move() { noise(); cout << "fly" << endl; }
};

class Canary: public Bird {
public:
 void noise() { cout << "chirp" << endl; }
 void move() { noise(); cout << "flap" << endl; }
};

class Tweety: public Canary {
public:
 void noise() { cout << "tweet" << endl; }
 void move() { cout << "run" << endl; }
};

int main() {

 Canary *yellow = new Tweety();
 yellow->noise();
 yellow->move();

 Bird *big = new Tweety();
 big->noise();
 big->move();

 return 0;
}

Output:

 CSE 374 Final Exam 3/17/11

 Page 12 of 14

Question 7. (12 points) (A not-so-Complex C++ problem) A complex number a+bi can
be represented in a program as an object containing a pair of doubles (floating-point
numbers). Here is a header file complex.h for a class Complex containing one
constructor and one operation (multiplication). (#ifndef, etc., omitted to save space.)

class Complex {
 public:
 // Construct Complex x+yi
 Complex(double x, double y);

 // Return a new Complex object that represents this*other.
 // If this = a+bi and other = c+di the result is a new Complex
 // object with real part = ac-bd and imaginary part = ad+bc.
 Complex times(Complex other);

 private:
 // Representation of a Complex number: re+im*i
 double re; // real part
 double im; // imaginary part
};

Give implementations below of the constructor and the times function as they would
appear in a file complex.cpp that implements class Complex.

#include "complex.h"

// write your code below.

 CSE 374 Final Exam 3/17/11

 Page 13 of 14

Question 8. (8 points) (concurrency) Short-answer question spread over two pages to
give you room to write – but please don’t feel obligated to use all of the space. We thank
you for your brevity.

In lecture we used the following example to discuss issues with concurrency. This code
declares a simple data structure to represent a bank account and a function to process a
withdrawal transaction.

 struct Acct { int balance; /* ... other fields ... */ };

 int withdraw(struct Acct * a, int amt) {
 if(a->balance < amt) return 1; // 1==failure
 a->balance -= amt;
 return 0; // 0==success
 }

(a) The claim is that although this code is correct in a sequential program, it may produce
incorrect results in a concurrent program, allowing a negative balance. How could this
happen? A short concrete example to support your argument is much better than a long
essay.

 CSE 374 Final Exam 3/17/11

 Page 14 of 14

Question 8. (cont.) (b) One of our summer interns claims that the problem is that the
balance modification is not part of the if-statement, and that the concurrency bug can be
fixed by rewriting the code this way:

 struct Acct { int balance; /* ... other fields ... */ };

 int withdraw(struct Acct * a, int amt) {
 if(a->balance >= amt) {
 a->balance -= amt;
 return 0;
 } else
 return 1;
 }

Will this fix the problem? Give a brief technical reason to support your answer.

