
CSE 374
Programming Concepts & Tools

Hal Perkins
Spring 2010

L t 7 I t d ti t C Th C L l f Ab t tiLecture 7 – Introduction to C: The C Level of Abstraction

Welcome to CWelcome to C

Compared to Java, in rough order of importancep , g p
– Lower level (less for compiler to do)
– Unsafe (wrong programs might do anything)
– Procedural programming — not “object-oriented”
– “Standard library” is much smaller.

(f)– Many similar control constructs (loops, ifs, ...)
– Many syntactic similarities (operators, types, ...)

• A different world view and much more to keep track• A different world-view and much more to keep track
of; Java-like thinking can get you in trouble.

2

Our planOur plan

A semi-nontraditional way to learn C:
• Learn how C programs run on typical 32-bit x86 machines

– Not promised by C’s definition
– You do not need to “reason in terms of theYou do not need to reason in terms of the

implementation” when you follow the rules
– But it does help to know this model

• To remember why C has the rules it does• To remember why C has the rules it does
• To debug incorrect programs

• Learn some C basics (including “Hello World!”)
• Learn what C is (still) used for
• Learn more about the language and good idioms
• Towards the end of the quarter: A little C++o a ds t e e d o t e qua te tt e C

3

Some referencesSome references

There’s a lot on the web, but here are some primary sources.p y
C: A Reference Manual, Harbison & Steele (now 5th ed.).

• The best current reference on C and its libraries;
includes information about recent versions of the Cincludes information about recent versions of the C
standard.

The C Programming Language, Kernighan & Ritchie
• “K&R” is a classic, one that every programmer must

read. A bit dated now (doesn’t include C99
extensions), but the primary source.), p y

Essential C, Stanford CS lib,
http://cslibrary.stanford.edu/101/EssentialC.pdf
Good short introduction to the languageGood short introduction to the language

4

Address spaceAddress space

Simple model of a running process (provided by the O/S):
• There is one address space (an array of bytes)

– Most common size today for a typical machine is 232*
– We will “assume 32” for now, though you often shouldn’t
– That is more RAM than you (probably) have* (O/S maintains

the 232 illusion even if you don’t; may lead to slowness)
– “Subscripting” this array takes 32 bits
– Something’s address is its position in this array
– Trying to read a not-used part of the array may cause a

“segmentation fault” (immediate crash)
• All data and code for the process are in this address space

– Code and data are bits; program “remembers” what is where
– O/S also lets you read/write files, stdin, stdout, stderr

*marks “fact” that is likely to become obsolete fairly soon

5

Address-space layoutAddress space layout

• The following is definitely different on different systems, but it’s
d d h C i i l done way to understand how C is implemented:

code globals heap → … ← stack

• So in one array of 8-bit bytes we have:
– Code instructions (typically immutable)
– Space for global variables (mutable and immutable) (like

Java’s static fields)
– A heap for other data (like objects returned by Java’s new)
– Unused portions; access causes “seg-fault”
– A call-stack holding local variables and code addresses

• Note: Assuming an int occupies 4 bytes

6

The stackThe stack

• The call-stack (or just stack) has one “part” or “frame” (j) p
(compiler folks call it an activation record) for each
active function (cf. Java method) that has not yet
returnedreturned

• It holds:
– Room for local variables and parametersRoom for local variables and parameters
– The return address (index into code for what to

execute after the function is done)
– Other per-call data needed by the underlying

implementation

7

What could go wrong?What could go wrong?

• Remember, the programmer has to keep the bits straight
th h C d l i t f i bl f ti d teven though C deals in terms of variables, functions, data

structures, etc. (not bits)
– If arr is an array of 10 elements, arr[30] accesses some

other thingother thing.
– Writing 8675309 where a return address should be

makes a function return start executing stuff that may
not be code.

– . . .
• Correct C programs can’t do these things, but nobody is

perfect.
• On the plus side, there is no “unnecessary overhead” like

keeping array lengths around and checking them!
• Okay, time to see C . . .

8

Hello World!Hello, World!

• Code:
#include<stdio.h>
int main(int argc, char**argv) {

printf("Hello, World!\n");
return 0;

}
– Compiling: gcc -o hi hello.c (usually add -Wall -g)p g g (y g)
– Running: ./hi

• Intuitively: main gets called with the command-line args
and the program exits when it returns.

• But there is a lot going on in terms of what the language
constructs mean, what the compiler does, and what
happens when the program runs.
We will focus mostly on the language• We will focus mostly on the language.

9

Quick explanationQuick explanation

#include<stdio.h>
int main(int argc, char**argv) {

printf("Hello, World!\n");
return 0;

}
• #include finds the file stdio.h (from where?) and includes its

entire contents (stdio.h describes printf, stdout, and more)
• A function definition is much like a Java method (return type,

name, arguments with types, braces, body); it is not part of a
class and there are no built-in objects or “this”.
A i t i lik i J th h it i d d th il (it• An int is like in Java, though its size depends on the compiler (it
is 32 bits on most mainstream Linux machines).

• main is a special function name; every full program has one.
• char** is a long story• char is a long story…

10

PointersPointers

• Think address, i.e., an index into the address-space array
• If argv is a pointer, then *argv returns the pointed-to value
• So does argv[0]
• And if argv points to an array of 2 values, then argv[1]

t th d (d d *(1) b t threturns the second one (and so does *(argv+1) but the +
here is funny)

• People like to say “arrays and pointers are the same thing
in C” This is sloppy talking but people say it anywayin C . This is sloppy talking, but people say it anyway.

• Type syntax: t* describes either
– NULL (seg-fault if you dereference it)

A pointer holding the address of some number of– A pointer holding the address of some number of
values of type t

• How many? You have to know somehow; no length
primitive.p t e

11

Pointers continuedPointers, continued

• So reading right to left: argv (of type char**) holds a
pointer to (one or more) pointer(s) to (one or more)
char(s).

• Fact #1 about main: argv holds a pointer to j pointers to
(one or more) char(s) where argc holds j.

• Common idiom: array lengths as other arguments.
• Fact #2 about main: For 0 ≤ i ≤ j where argc holds j, argv[i] j g j, g []

is an array of char(s) with last element equal to the
character ’\0’ (which is not ’0’).

• Very common idiom: pointers to char arrays ending with y p y g
’\0’ are called strings. The standard library and language
often use this idiom.

• [Let’s draw a picture of “memory” when hi runs.][p y]

12

Rest of the storyRest of the story

#include<stdio.h>
int main(int argc, char**argv) {

printf("Hello, World!\n");
return 0;

}
• printf is a function taking a string (a char*) (and often additional

arguments, which are formatted according to codes in the string)
• "Hello, World!\n" evaluates to a pointer to a global, immutable

array of 15 characters (including the trailing ’\0’; and ’\n’ is one
character).

i tf it it t t t td t hi h i l b l i bl f t• printf writes its output to stdout, which is a global variable of type
FILE* defined in stdio.h.
– How this gets hooked up to the screen (or somewhere else)

is the library’s (nontrivial) problemis the library s (nontrivial) problem.

13

But wait there’s more!But wait, there s more!

• Many variations that we will explore as time permitsy p p
– Accessing program command-line arguments

(argc and argv) – part of next homework
– Other I/O functions (fprintf, fputs, fgets, fopen, …)
– Program exit values (caller can check, e.g. in shell

scripts)scripts)
– Strings – much ado about strings

• Strings as arrays of characters (local and g y (
allocated on the heap)

• Updating strings, buffer overflow, ’\0’
• String library

14

