
CSE 374
Programming Concepts & Tools

Hal Perkins
Spring 2010

L t 6 d d li t lLecture 6 – sed, command-line tools wrapup

Where we areWhere we are

• Learned how to use the shell to run, combine, and , ,
write programs

• Learned regular-expressions (plus more) and grep for
fi di id d bfinding guided by regexps

• Now: sed for find-and-replace guided by regexps
• Then: Short plug for awk (not tested or taught)• Then: Short plug for awk (not tested or taught)
• Then: Introduction to C

2

ReviewReview

• grep takes a pattern and a file (or stdin)g p p ()
• The pattern describes a regexp:

– Example: a[bc]*.?.?d*e
S i l h t ? ^ $ * () [] { } \ | (S d– Special characters: . ? ^ $ * () [] + { } \ | (Some need
escaping; see the man page)

• grep prints any line that has one or more substrings that g p p y g
match.
– Or invert with -v

Or count with c– Or count with -c
• So the output is basically a subset of the input. What if we

want to change or add some output? Enter sed…

3

sedsed

• A stream editor; a terrible little language that processes one line
i M l i li i l i ibl b i f lat a time. Multi-line manipulations possible but painful.

• Simple most-common use (and -e optional here):
sed -e s/pattern/replacement/g file

• “For each line in file, replace every (longest) substring that
matches pattern with replacement and then print it to standard
out.” (often want to quote ‘s/…/…/g’ to avoid shell substitutions)

• Simple variations:• Simple variations:
– omit file: read from stdin
– omit g: replace only first match

d d dd h i i t l li ith 1 t h– sed -n and add p where g is: print only lines with 1 match
– multiple -e s/.../.../...: apply each left-to-right
– -f file2: read script from file; apply each line top-to-bottom

4

More sedMore sed

• The replacement text can use \1 . . . \9 – very p y
common.

• Hint: To avoid printing the whole line, match the
whole line and then have the replacement print onlywhole line and then have the replacement print only
the part you want.

• Newline note: The \n is not in the text matched
against and is (re) added when printedagainst and is (re)-added when printed.
– i.e., lines are read into an “edit buffer” and

processed there without the (local system’s)
linewline.

– Aside: “Line-ending madness” on 3 common
operating systems.p g y

5

Even more sedEven more sed

• “sed lines” can have more:
– different commands (so far, s for substitution)

• A couple others: p, d, N
Oth f l th h ld (t lid)• Other useful ones use the hold space (next slide)

– different addresses (before the command)
• number for exactly that line numbernumber for exactly that line number
• first~step (GNU only) (lines are first + n*step)
• $ last line
• /regexp/ lines containing a match of regexp

– a label such as :foo before address or command
[:label] [address] [command-letter][more-stuff-for-command][:label] [address] [command-letter][more-stuff-for-command]

6

Fancy stuffFancy stuff

• Usually (but not always) when you get to this stuff, y (y) y g
your script is unreadable and easier to write in
another language.
– • The “hold” space. One other string that is held The hold space. One other string that is held

across lines. Also the “pattern” space (where the
“current line” starts).

• x G H• x, G, H
– Branches to labels (b and t)

• Enough to code up conditionals and loops like g
in assembly language.

• Your instructor never remembers the details, but
knows roughly what is possible.knows roughly what is possible.

7

sed summarysed summary

• The simplest way to do simple find-and-replace using p y p p g
regexps.

• Programs longer than a few lines are possible, but
b bl th t lprobably the wrong tool.

• But a line-oriented stream editor is a very common
need, and learning how to use one can help you useneed, and learning how to use one can help you use
a better one.

• In homework 3, a “one-liner” is plenty.
• For the rest, see the manual.

8

awkawk

We will skip awk, another useful line-oriented editor.p ,
Compared to sed:
• Much saner programming constructs (math,

variables, for-loops, . . .)
• Easier to print “fields” of lines, where fields are

separated by a chosen “delimiter”separated by a chosen delimiter
• Easier to process multiple lines at a time (change the

end-of-line delimiter)
• Less regexp support; one-liners not as short

9

String-processing symmaryString processing symmary

• Many modern scripting languages (perl, python, ruby, y p g g g (p , py , y,
et al) support grep, sed, and awk features directly in
the language, perhaps with better syntax.

B tt bi f t– Better: combine features
– Worse: one big program that “hopefully has

everything” instead of useful small oneseverything instead of useful small ones
• When all you need to do is simple text manipulation,

these tools let you “hack something up” quicker than,
Jsay, Java.

• But if you need “real” data structures, performance,
libraries, etc., you reach their practical limits quickly.libraries, etc., you reach their practical limits quickly.

10

