
CSE 374
Programming Concepts & Tools

Hal Perkins
Spring 2010

L t 3 I/O R di ti Sh ll S i tLecture 3 – I/O Redirection, Shell Scripts

Standard I/O streams and redirectionStandard I/O streams and redirection

• Recall: every command has 3 standard streams: y
stdin (input), stdout (output), stderr (error messages)

• Default is keyboard (stdin), screen (stdout, stderr)
• Can redirect to a file with <, >

echo hello > there
cat < there; cat <there > herecat < there; cat <there > here

• Can “pipe” output (stdout) of one command to input
(stdin) of another with |() |

man bash | less

2

File redirection in detailFile redirection in detail

• Somewhat cryptic; some common usages:yp ; g
– redirect input: cmd < file
– redirect output, overwriting file: cmd > file
– redirect output, appending to file: cmd >> file
– redirect error output: cmd 2> file

f & f– redirect output and error output to file: cmd &> file
– ...
See bash manual sec 3 6 for other variationsSee bash manual sec. 3.6 for other variations

• Useful special file: /dev/null
– Immediate eof if read; data discarded if writtenImmediate eof if read; data discarded if written

3

PipesPipes

cmd1 | cmd2

• Change the stdout of cmd1 and the stdin of cmd2 to be
the same, new stream!
V f l id• Very powerful idea:
– In the shell, larger command out of smaller commands
– To the user, combine small programs to get more

sef lnessusefulness
• Each program can do one thing and do it well!

• Examples:
f h l | lfoo --help | less
djpeg me.jpg | pnmscale -xysize 100 150 | cjpeg >

thumb.jpg

4

Combining commandsCombining commands

• Combining simpler commands to form more complicated
ones is very programming-like. In addition to pipes, we
have:

cmd1 ; cmd2 (sequence)
cmd1 || cmd2 (or, using int result – the “exit status”)
cmd1 && cmd2 (and, like or; run cmd2 only if cmd1
succeeds – i.e., “returns” 0),)
cmd1 ‘cmd2‘ (use output of cmd2 as input to cmd1).
(Note cmd2 surrounded by backquotes, not regular
quotes)q)

• Useless example: cd ‘pwd‘.
• Non-useless example: mkdir ‘whoami‘A‘whoami‘.

5

(Non)-alphabet soup(Non) alphabet soup

• List of characters with special (before program/built-in p (p g
runs) meaning is growing: ‘ ! % & * ~ ? [] " ’ \ > < | $
(and we’re not done).

• If you ever want these characters or (space) inIf you ever want these characters or (space) in
something like an argument, you need some form of
escaping; each of " ’ \ have slightly different meaning.

• First approximation:• First approximation:
– "stuff" treats stuff as a single argument but allows

some substitutions for $variables.
example: cat "to-do list" # filename with spaces(!)

– ’stuff’ suppresses basically all substitutions and
treats stuff literally.y

6

Shell Expansion and ProgramsShell Expansion and Programs

• Important but sometimes overlooked point: shell p p
metacharacter expansion, I/O redirection, etc. are
done by the shell before a program is launched

Th ll k if tdi / td t– The program usually never knows if stdin/stdout
are connected to the keyboard/screen or files

– Program doesn’t see original command line – justProgram doesn t see original command line just
expanded version as a list of arguments

– Expansion is uniform for all programs since it’s
d i l th h lldone in one place – the shell

7

Shell as a programming languageShell as a programming language

• The shell is an interpreter for a strange programming
l (f th) S flanguage (of the same name). So far:
– “Shell programs” are program names and arguments
– The interpreter runs the program (passing it the

arguments) prints any output and prints anotherarguments), prints any output, and prints another
prompt. The program can affect the file-system, send
mail, open windows, etc.

– “Builtins” such as exit give directions to the interpreter.Builtins such as exit give directions to the interpreter.
– The shell interprets lots of funny characters differently,

rather than pass them as options to programs.
• It’s actually even more complicated:y p

– (two kinds of) variables.
– some programming constructs (conditionals, loops,

etc.)

8

Toward ScriptsToward Scripts…

• A running shell has a state, i.e., a currentg , ,
– working directory
– user
– collection of aliases
– history
– ...

• In fact, next time we will learn how to extend this
state with new shell variablesstate with new shell variables.

• We learned that source can execute a file’s contents,
which can affect the shell’s state.

9

Running a scriptRunning a script

• What if we want to run a bunch of commands without
changing our shell’s state?

• Answer: start a new shell (sharing our stdin, stdout,
td) th d i it d itstderr), run the commands in it, and exit.

• Better answer: Automate this process.
– A shell script as a program (user doesn’t even– A shell script as a program (user doesn t even

know it’s a script).
– Now we’ll want the shell to end up being a

programming language
– But it will be a bad one except for simple things

10

Writing a scriptWriting a script

• Make the first line exactly: #!/bin/bashy
• Give yourself “execute” permission on the file
• Run it

P b bl d t d fil ith / if t– Probably need to precede filename with ./ if current
directory isn’t normally searched for commands (i.e., .
is not normally included in $PATH)is not normally included in $PATH)

• Note: The shell consults the first line of the file:
– If a shell-program is there, launch it and run the script

(i il t i k k f l th t)(similar trick works for perl, python, etc.)
– Else if it’s a “real executable” run it (more later)

• Example: listhomeExample: listhome

11

More expressionsMore expressions

• bash expressions can be:p
– math or string tests (e.g., -lt)
– logic (&&, ||, !) (if you use double-brackets)

fil t t (P k t G id)– file tests (very common; see Pocket Guide)
– math (if you use double-parens)

• Gotcha: parens and brackets must have spaces beforeGotcha: parens and brackets must have spaces before
and after them!

• Example: dcdls (double cd and ls) can check that
arguments are directoriesarguments are directories

• Exercise: script that replaces older file with newer one
• Exercise: make up your own

12

Accessing argumentsAccessing arguments

• The script accesses the arguments with $i to get the ithp g g
one (name of program is $0).
– Example: make thumbnail1

• Also very useful for homework: shift (manual Section 4 1)• Also very useful for homework: shift (manual Section 4.1)
– Example: countdown

• We would like optional arguments and/or usage p g g
messages. Need:
– way to find out the number of arguments

a conditional– a conditional
– some stuff we already have
– Example: make thumbnail2

13

ReviewReview

• The shell runs programs and builtins, interpreting p g , p g
special characters for filenames, history, I/O
redirection.
S b ilti lik if t di t• Some builtins like if support rudimentary
programming.

• A script is a program to its user, but is written usingA script is a program to its user, but is written using
shell commands.

• So the shell language is okay for interaction and
“ i k d di t ” ki it t b t“quick-and-dirty” programs, making it a strange beast.

• For both, shell variables are extremely useful.

14

Preview: VariablesPreview: Variables

i=17 # no spaces
set
echo $i
set | grep i
echo $i
unset i
echo $i
f1=$1

• (The last is very useful in scripts before shifting)
• Enough for next homework (arithmetic, conditionals, shift, g (, , ,

variables, redirection, ...)
• Gotcha: using undefined variables (e.g., because of typo)

doesn’t fail (just the empty string).

15

