
CSE 374
Programming Concepts & Tools

Hal Perkins
Spring 2009

L t 13 C Th R t f th PLecture 13 – C: The Rest of the Preprocessor

The story so farThe story so far…

• We’ve looked at the basics of the preprocessorp p
– #include to access declarations in header files
– #define for symbolic constants

• Now:
– More details; where it fits

f– Multiple source and header files
– A bit about macros (somewhat useful, somewhat a

warning)warning)

2

The compilation pictureThe compilation picture

gcc does all this for you
• -E to only preprocess; result on stdout (rare)
• -c to stop with .o (common for individual files in larger

program)program)

3

More about multiple filesMore about multiple files

Typical usage:
• Preprocessor #include to read file containing• Preprocessor #include to read file containing

declarations describing code
• Linker handles your .o files and other codey

– By default, the “standard C library”
– Other .o and .a files
– Whole lecture on linking and libraries later…

4

The preprocessorThe preprocessor

• Rewrites your .c file before the compiler gets at the code.y p g
– Lines starting with # tell it what to do.

• Can do crazy things (please don’t); uncrazy things are:
1 I l di t t f h d fil1. Including contents of header files
2. Defining constants and parameterized macros

• Token-based, but basically textual replacementToken based, but basically textual replacement
• Easy to misdefine and misuse

3. Conditional compilation
• Include/exclude part of a file
• Example uses: code for debugging, code for

particular computers (handling portability issues), pa t cu a co pute s (a d g po tab ty ssues),
“the trick” for including header files only once

5

File inclusion (review)File inclusion (review)

#include <hdr.h>
• Search for file hdr.h in “standard include directories” and

include its contents in this place
– Typically lots of nested includes, result not fit for yp y ,

human consumption
– Idea is simple: declaration of standard library routines

are in headers; allows correct use after declaration;
#include “hdr.h”

– Same, but first look in current directory
How to break your program into smaller files that can– How to break your program into smaller files that can
call routines in other files

• gcc -I option: look first in specified directories for headers
(keep paths out of your code files) (not needed for 374)(keep paths out of your code files) (not needed for 374)

6

Header file conventionsHeader file conventions

Conventions: always follow these
1. Give included files names ending in .h; only include these

header files. Never include a .c source file
2. Do not put functions in a header file; only structp ; y

definitions, prototypes, and other includes
3. Do all your #includes at the beginning of a file
4 For header file foo h start it with:4. For header file foo.h start it with:

#ifndef FOO_H
#define FOO_H

d d it ithand end it with:
#endif

(We will learn why very soon.)

7

Simple macros (review)Simple macros (review)

Symbolic constants and other texty
#define NOT_PI 22/7
#define VERSION 3.14
#define FEET_PER_MILE 5280
#define MAX_LINE_SIZE 5000

f f• Replaces all matching tokens in rest of file
– Knows where “words” start and end (unlike sed)

Has no notion of scope (unlike C compiler)– Has no notion of scope (unlike C compiler)
– (Rare: can shadow with another #define or use

#undef))

8

Macros with parametersMacros with parameters

#define TWICE_AWFUL(x) x*2
#define TWICE_BAD(x) ((x)+(x))
#define TWICE_OK(x) ((x)*2)
double twice(double x) { return x+x; } // best (editorial opinion)

• Replace all matching “calls” with “body” but with text of
arguments where the parameters are (just string substitution)

• Gotchas (understand why!):
y=3; z=4; w=TWICE_AWFUL(y+z);
y=7; z=TWICE_BAD(++y); z=TWICE_BAD(y++);

• Common misperception: Macros avoid performance overhead of
a function call (maybe true in 1975, not now)

• Macros can be more flexible though (TWICE_OK works on ints
d d bl ith t i (hi h ld d))and doubles without conversions (which could round))

9

Justifiable usesJustifiable uses

Parameterized macros are generally to be avoided (use g y (
functions), but there are things functions cannot do:

#define NEW_T(t,howmany) ((t*)malloc((howmany)*sizeof(t))

#define PRINT(x) printf("%s:%d %s\n", __FILE__, __LINE__,x)

10

Conditional compilationConditional compilation

#ifdef FOO (matching #endif later in file)
#ifndef FOO (matching #endif later in file)
#if FOO > 2 (matching #endif later in file)
(You can also have a #else inbetween somewhere.)
Simple use: #ifdef DEBUG // do following only when debugging

printf(...);
#endif

Fancier: #ifdef DEBUG // use DBG_PRINT for debug-printing
#define DBG_PRINT(x) printf("%s",x)
#else
#define DBG_PRINT(x) // replace with nothing
#endif

• Note: gcc -D FOO makes FOO “defined”Note: gcc D FOO makes FOO defined

11

Back to header filesBack to header files

• Now we know what this means:
#ifndef SOME_HEADER_H
#define SOME_HEADER_H

rest of some header h... rest of some_header.h ...
#endif

• Assuming nobody else defines SOME_HEADER_H
(convention) the first #include "some header h" will do(convention), the first #include some_header.h will do
the define and include the rest of the file, but the second
and later will skip everything

More efficient than copying the prototypes over and– More efficient than copying the prototypes over and
over again.

– In presence of circular includes, necessary to avoid
“creating” an infinitely large result of preprocessingcreating an infinitely large result of preprocessing.

• So we always do this.
12

C preprocessor summaryC preprocessor summary

• A few easy to abuse features and a bunch of y
conventions (for overcoming C’s limitations).
– #include (cycles fine with “the trick”, the way you

h t th d fi iti d)say what other definitions you need)
– #define (avoids magic constants; parameterized

macros have a few justifiable uses; token-basedmacros have a few justifiable uses; token based
text replacement)

– #if... (for showing the compiler less code)

13

