CSE 374
Programming Concepts & Tools

Hal Perkins
Spring 2009
Lecture 8 — C: Locals, Ivalues and rvalues, more pointers

The story so far...

« The low-level execution model of a process (one address
space)
 Basics of C:
— Language features: functions, pointers, arrays
— Idioms: Array-lengths, '\O’ terminators
 Today, more features:
— Control constructs and int guards
— Local declarations
— Source file structure; storage duration and scope
— Left vs. right expressions; more pointers
— Dangling pointers
— Stack arrays and implicit pointers (confusing)

* Next time: structs; the heap and manual memory management
(and some hacking)

Control constructs

e while, If, for, break, continue, switch: much like Java

o Key difference: No built-in boolean type; use ints (or
pointers)

— Anything but O (or NULL) is true.
— 0 and NULL are false.

— C99 did add a bool library but use is still sporadic/
optional
e goto much maligned, but makes sense for some
tasks (more general than Java’s labeled break)

e Gotcha: switch cases fall-through unless there is an
explicit transfer (typically a break), just like Java

Storage, lifetime, and scope

e Atrun-time, every variable needs space.
— When is the space allocated and deallocated?
e Every variable has scope.

— Where can the variable be used (unless another
variable shadows it)?

 C has several answers (with inconsistent reuse of the
word static).

« Some answers rarely used but understanding storage,
lifetime, and scope Is important.

e Related: Allocating space is separate from initializing that
space.

— Use uninitialized bits? Hopefully crash but who knows.

— Unlike Java, which zeros out objects, complains about
uninitialized locals.

Storage, lifetime, and scope

Global variables allocated before main, deallocated after main.
Scope is entire program.

— Usually bad style, kind of like public static Java fields.

— But can be OK for truly global data like conversion tables,
physical constants, etc.

Static global variables like global variables but scope is just that
source file, kind of like private static Java fields.

— Related: static functions cannot be called from other files.

Static local variables like global variables (!) but scope is just
that function, rarely used. (We won’t use them)

Local variables (often called automatic) allocated “when
reached” deallocated “after that block”, scope is that block.

— So with recursion, multiple copies of same variable (one per
stack frame/function activation).

— Like local variables in Java.

Typical file layout

* Not a formal rule, but good conventional style

// Includes for functions & types defined elsewhere
#include <stdio.h>

#include ...

I/ global variables (if any)

static int days_per_month[] ={ 31, 28, 31, 30, ...}
// function prototypes (to handle “declare before use”)
void some_later function(char, int);

// function definitions

void do_this(){ ...}

char * return_that(char s[], intn) { ... }

Int main(int argc, char ** argv) { ... }

Some glitches

Declarations must precede statements in a “block”

— But any statement can be a block, souse { ... } if you
need to

— Or use --std=c99 gcc compiler option

Array variables in code must have a constant size
— So the compiler knows how much space to allocate
— (C99 has an extension to relax this; rarely used)

— Arrays whose size depends on runtime information are
allocated on the heap (next time)

— Large arrays are best allocated on the heap also, even
If constant size, although not required

Array types in function arguments are pointers(!)
Referring to an array doesn’t mean what you think (!)
— “Iimplicit array promotion” (later)

lvalues vs rvalues

 Inintro courses we are usually fairly sloppy about the
difference between the left side of an assignment and the
right. To “really get” C, it helps to get this straight:

— Law #1. Left-expressions get evaluated to locations
(addresses)

— Law #2: Right-expressions get evaluated to values

— Law #3: Values include numbers and pointers
(addresses)

 The key difference is the “rule” for variables:

— As a left-expression, a variable is a location and we are
done

— As a right-expression, a variable gets evaluated to its
location’s contents, and then we are done.

— Most things do not make sense as left expressions.
e Note: This is true in Java too.

Function arguments

o Storage and scope of arguments is like for local variables.
« But initialized by the caller (“copying” the value)
e SO0 assigning to an argument has no affect on the caller.

e But assigning to the space pointed-to by an argument
might.

void f() { Int g(int x) {
Int 1=17; X = x+1;
Int j=g(i); return x+1,;

printf("%d %d",i,j); }
}

Function arguments

o Storage and scope of arguments is like for local variables.

« But initialized by the caller (“copying” the value)
e SO0 assigning to an argument has no affect on the caller.

e But assigning to the space pointed-to by an argument
might.

void f() { int g(int* p) {
inti=17: *p=(_"p)+1;
int j=g(&i); return (*p) + 1;

printf("%d %d",i,j); }
}

10

Function arguments

o Storage and scope of arguments is like for local variables.
« But initialized by the caller (“copying” the value)
e SO0 assigning to an argument has no affect on the caller.

e But assigning to the space pointed-to by an argument
might.

void () { int g(int* p) {
Int iI=17; Int kK = *p;
int j=g(&i); Int *q = &Kk;
printf("%d %d",i,j): pP=d;

} (*p) = (*q) + 1;

return (*q) + 1,

11

Pointers to pointers to ...

Any level of pointer makes sense:

— Example: argv, *argv, **argv

— Same example: argv, argv[0], argv[0][O]

But &(&p) makes no sense (&p is not a left-expression,
the value is an address but the value is in no-particular-

place).
This makes sense (well, at least it's legal C):
void f(int x) {
INt*p = &X;
Int**q = &p;
... can usex, p, *p, d, *d, **q, ...
}
Note: When playing, you can print pointers with %p (just
numbers in hexadecimal)

12

Dangling pointers

int* f(int x) {

Int *p;
If(x) {
Inty = 3;
p =&y, [* ok */

} I* ok, but p now dangling */
[*y = 4 does not compile */
*n=7; [*could CRASH but probably not */
return p; /* uh-oh, but no crash yet */
}
void g(int *p) { *p = 123; }
void h() {
g(f(7)); /*HOPEFULLY YOU CRASH (but maybe not) */

}

13

More gotchas

« Declarations in C are funky:

— You can put multiple declarations on one line, e.g., int X, y;
or int x=0, y; or int x, y=0;, or ...
— Butint *x, y; means int *x; int y; — you usually mean int *x, *y,
— Common style rule: one declaration per line (clarity, safety)
* No forward references:

— A function must be defined or declared before it is used.
(Lying: “implicit declaration” warnings, return type assumed int, ...)

— Linker error if something is used but not defined (including
main)

» Use -c to not link yet (more later).

— To write mutually recursive functions, you just need a
(forward) declaration.

« Variables holding arrays have super-confusing (but convenient)
rules...

14

Arrays revisited

* “Implicit array promotion”: a variable of type T[] becomes a
variable of type T* in an expression

void f1(int* p) { *p = 5; }

int* f2() {
Int X[3];
x[0] = 5;

[* (&x)[0] = 5; wrong */
*X = b;
*(x+0) =5
f1(x);

[* £1(&X); wrong */

[* x = &X[2]; wrong */
Int *p = &x[2];

}

15

