
CSE 374
Programming Concepts & Tools

Hal Perkins
Spring 2009

L t 8 C L l l l d l i tLecture 8 – C: Locals, lvalues and rvalues, more pointers

The story so farThe story so far…

• The low-level execution model of a process (one address
)space)

• Basics of C:
– Language features: functions, pointers, arrays
– Idioms: Array-lengths, ’\0’ terminators

• Today, more features:
– Control constructs and int guards
– Local declarations
– Source file structure; storage duration and scope
– Left vs. right expressions; more pointers
– Dangling pointers
– Stack arrays and implicit pointers (confusing)

• Next time: structs; the heap and manual memory managementp y g
(and some hacking)

2

Control constructsControl constructs

• while, if, for, break, continue, switch: much like Java
• Key difference: No built-in boolean type; use ints (or

pointers)
Anything but 0 (or NULL) is true– Anything but 0 (or NULL) is true.

– 0 and NULL are false.
– C99 did add a bool library but use is still sporadic/

optional
• goto much maligned, but makes sense for some

tasks (more general than Java’s labeled break)tasks (more general than Java s labeled break)
• Gotcha: switch cases fall-through unless there is an

explicit transfer (typically a break), just like Java

3

Storage lifetime and scopeStorage, lifetime, and scope

• At run-time, every variable needs space.
– When is the space allocated and deallocated?

• Every variable has scope.
– Where can the variable be used (unless another

i bl h d it)?variable shadows it)?
• C has several answers (with inconsistent reuse of the

word static).
Some ans ers rarel sed b t nderstanding storage• Some answers rarely used but understanding storage,
lifetime, and scope is important.

• Related: Allocating space is separate from initializing that
spacespace.
– Use uninitialized bits? Hopefully crash but who knows.
– Unlike Java, which zeros out objects, complains about

uninitialized locals.u t a ed oca s

4

Storage lifetime and scopeStorage, lifetime, and scope

• Global variables allocated before main, deallocated after main.
S i iScope is entire program.
– Usually bad style, kind of like public static Java fields.
– But can be OK for truly global data like conversion tables,

h i l t t tphysical constants, etc.
• Static global variables like global variables but scope is just that

source file, kind of like private static Java fields.
Related: static functions cannot be called from other files– Related: static functions cannot be called from other files.

• Static local variables like global variables (!) but scope is just
that function, rarely used. (We won’t use them)

• Local variables (often called automatic) allocated “when• Local variables (often called automatic) allocated when
reached” deallocated “after that block”, scope is that block.
– So with recursion, multiple copies of same variable (one per

stack frame/function activation).)
– Like local variables in Java.

5

Typical file layoutTypical file layout

• Not a formal rule, but good conventional style

// includes for functions & types defined elsewhere
#include <stdio.h>
#include …
// global variables (if any)
static int days per month[] = { 31 28 31 30 };static int days_per_month[] = { 31, 28, 31, 30, …};
// function prototypes (to handle “declare before use”)
void some_later_function(char, int);
// function definitions
void do_this() { … }
char * return that(char s[], int n) { … }c a etu _t at(c a s[], t) { }
int main(int argc, char ** argv) { … }

6

Some glitchesSome glitches

• Declarations must precede statements in a “block”
– But any statement can be a block, so use { … } if you

need to
– Or use --std=c99 gcc compiler option

A i bl i d t h t t i• Array variables in code must have a constant size
– So the compiler knows how much space to allocate
– (C99 has an extension to relax this; rarely used)
– Arrays whose size depends on runtime information are

allocated on the heap (next time)
– Large arrays are best allocated on the heap also, even

if constant size although not requiredif constant size, although not required
• Array types in function arguments are pointers(!)
• Referring to an array doesn’t mean what you think (!)

“implicit array promotion” (later)– implicit array promotion (later)

7

lvalues vs rvalueslvalues vs rvalues

• In intro courses we are usually fairly sloppy about the
diff b t th l ft id f i t d thdifference between the left side of an assignment and the
right. To “really get” C, it helps to get this straight:
– Law #1: Left-expressions get evaluated to locations

(addresses)(addresses)
– Law #2: Right-expressions get evaluated to values
– Law #3: Values include numbers and pointers

(addresses)(addresses)
• The key difference is the “rule” for variables:

– As a left-expression, a variable is a location and we are
done

– As a right-expression, a variable gets evaluated to its
location’s contents, and then we are done.

– Most things do not make sense as left expressions.
• Note: This is true in Java too.

8

Function argumentsFunction arguments

• Storage and scope of arguments is like for local variables.g p g
• But initialized by the caller (“copying” the value)
• So assigning to an argument has no affect on the caller.

B t i i t th i t d t b t• But assigning to the space pointed-to by an argument
might.
void f() { int g(int x) {() { g() {

int i=17; x = x+1;
int j=g(i); return x+1;

i tf("%d %d" i j) }printf("%d %d",i,j); }
}

9

Function argumentsFunction arguments

• Storage and scope of arguments is like for local variables.g p g
• But initialized by the caller (“copying” the value)
• So assigning to an argument has no affect on the caller.

B t i i t th i t d t b t• But assigning to the space pointed-to by an argument
might.
void f() { int g(int* p) {() { g(p) {

int i=17; *p = (*p) + 1;
int j=g(&i); return (*p) + 1;

i tf("%d %d" i j) }printf("%d %d",i,j); }
}

10

Function argumentsFunction arguments

• Storage and scope of arguments is like for local variables.g p g
• But initialized by the caller (“copying” the value)
• So assigning to an argument has no affect on the caller.

B t i i t th i t d t b t• But assigning to the space pointed-to by an argument
might.
void f() { int g(int* p) {() { g(p) {

int i=17; int k = *p;
int j=g(&i); int *q = &k;

i tf("%d %d" i j)printf("%d %d",i,j); p = q;
} (*p) = (*q) + 1;

return (*q) + 1;etu (q) ;
}

11

Pointers to pointers toPointers to pointers to …

• Any level of pointer makes sense:
– Example: argv, *argv, **argv
– Same example: argv, argv[0], argv[0][0]

• But &(&p) makes no sense (&p is not a left-expression,
th l i dd b t th l i i ti lthe value is an address but the value is in no-particular-
place).

• This makes sense (well, at least it’s legal C):
oid f(int) {void f(int x) {
int*p = &x;
int**q = &p;

* * **... can use x, p, *p, q, *q, **q, ...
}

• Note: When playing, you can print pointers with %p (just
numbers in hexadecimal)numbers in hexadecimal)

12

Dangling pointersDangling pointers

int* f(int x) {
int *p;
if(x) {

int y = 3;
p = &y; /* ok */

} /* ok, but p now dangling */
/* y = 4 does not compile */y p
p = 7; / could CRASH but probably not */
return p; /* uh-oh, but no crash yet */

}}
void g(int *p) { *p = 123; }
void h() {

g(f(7)); /* HOPEFULLY YOU CRASH (but maybe not) */g(f(7)); / HOPEFULLY YOU CRASH (but maybe not) /
}

13

More gotchasMore gotchas

• Declarations in C are funky:
– You can put multiple declarations on one line, e.g., int x, y;

or int x=0, y; or int x, y=0;, or ...
– But int *x, y; means int *x; int y; – you usually mean int *x, *y;
– Common style rule: one declaration per line (clarity, safety)

• No forward references:
– A function must be defined or declared before it is used.

(L i “i li it d l ti ” i t t d i t)(Lying: “implicit declaration” warnings, return type assumed int, ...)
– Linker error if something is used but not defined (including

main)
• Use c to not link yet (more later)• Use -c to not link yet (more later).

– To write mutually recursive functions, you just need a
(forward) declaration.

• Variables holding arrays have super-confusing (but convenient)• Variables holding arrays have super-confusing (but convenient)
rules…

14

Arrays revisitedArrays revisited

• “Implicit array promotion”: a variable of type T[] becomes a
variable of type T* in an expressionvariable of type T* in an expression

void f1(int* p) { *p = 5; }

int* f2() {
int x[3];
x[0] = 5;

/* (&x)[0] = 5; wrong */
*x = 5;
*(x+0) = 5;
f1()f1(x);

/* f1(&x); wrong */
/* x = &x[2]; wrong */

int *p = &x[2];int *p = &x[2];
}

15

