
 CSE 374 Midterm Exam 5/04/09

 Sample Solution Page 1 of 7

Question 1. (15 points) Suppose we have the following directories and files stored in a
Linux system. Directories are indicated by names ending with a slash (‘/’), and the
contents of each directory appear below it indented a few spaces.

 cse374/
 index.html
 syllabus.pdf
 lectures/
 01-intro.ppt
 01.intro.pdf
 02-shell.ppt
 02-shell.pdf
 03-scripts.ppt
 03-scripts.pdf
 lec1.history
 lec2.history
 lec3files.tar

cse374/ (continued)
 homework/
 hw1.html
 hw2.html
 hw3.html
 hw3files/
 sample1.txt
 sample2.txt
 exams/
 midterm.doc
 midterm.pdf

What happens when we enter each of the following sequences of commands? Assume
that each part of the problem is completely independent, that the files and directories are
as given above when each group of commands is executed, and that the current working
directory is initially the cse374 top-level directory. You should describe the output
displayed or the effect produced. You do not need to describe the detailed effects of each
of the individual commands. For instance, if the commands are “cd exams; rm *”, a
good answer would be “delete the files in the exams directory”.

(a) cd homework; echo *.htm*

Output: hw1.html hw2.html hw3.html

(b) cd homework; mv */*.txt ..

Moves hw3files/sample1.txt and hw3files/sample2.txt to the parent
directory cse374.

(c) cd lectures; cd ../ex*; ls

Output: midterm.doc midterm.pdf (i.e., file names in the exams directory)

Some answers to different parts of the question didn’t specifically list the output
produced or the names of files moved, but only gave a general description of what
happened. Only 1 point was deducted for that, even if it happened in more than one
part of the question.

 CSE 374 Midterm Exam 5/04/09

 Sample Solution Page 2 of 7

Question 2. (15 points) This question involves the same set of files and directories as
question 1. The list is repeated below for convenience.

 cse374/
 index.html
 syllabus.pdf
 lectures/
 01-intro.ppt
 01.intro.pdf
 02-shell.ppt
 02-shell.pdf
 03-scripts.ppt
 03-scripts.pdf
 lec1.history
 lec2.history
 lec3files.tar

cse374/ (continued)
 homework/
 hw1.html
 hw2.html
 hw3.html
 hw3files/
 sample1.txt
 sample2.txt
 exams/
 midterm.doc
 midterm.pdf

Write bash commands to perform the following tasks. You should assume that each
part of the question is executed independently of the other parts, each part starts with the
original set of files and directories, and the initial working directory is cse374.

(a) Create a new subdirectory of cse374 named pdfs. Then use a single mv command
to move all the pdf files (files whose names end in .pdf) shown above into that new
subdirectory. Your mv command must use wildcards (*.pdf) to specify the files – you
may not write out the individual pdf file names.

 mkdir pdfs
 mv *.pdf */*.pdf pdfs

There is no -r option for mv to look for files in subdirectories recursively.

(b) Remove the homework directory and all of its contents with a single command.

 rm -rf homework

Will work without the -f option, but might require extra input to confirm file
deletions. No points deducted if you omitted this option.

(c) Write to stdout the number of files in the lectures directory that have names
ending in .ppt. The output should just be a number with no titles, labels, or other text.
(The answer is 3 in this case, but your answer must actually count the files – “echo 3”
is not appropriate. You will receive substantial partial credit if your command(s) print
the correct answer but with some additional text.)

 ls lectures/*.ppt | wc -l

 CSE 374 Midterm Exam 5/04/09

 Sample Solution Page 3 of 7

Question 3. (5 points) Several of the students in the class are doing their homework on
dante, and it is tedious to enter the full ssh dante.u.washington.edu
command to log on repeatedly.

Give a bash alias command that a user could include in their .bash_profile file
so that typing

 dante

would execute the above ssh command to start a remote login session on dante.

 alias dante=’ssh dante.u.washington.edu’

Double quotes also work fine, but omitting the quotes produces an error.
Backquotes, however, don’t work since they execute the ssh command.

Question 4. (10 points) Write regular expressions that could be used with grep to to
locate words with the following properties in a file containing a list of words, one word
per line (like the one demonstrated in class).

(a) All words that start with the letter ‘z’ and end with any letter that is a vowel (i.e, end
with one of the letters ‘a’, ‘e’, ‘i’, ‘o’, or ‘u’).

 ^z.*[aeiou]$

Some answers also included AEIOU in the set of vowels, although this didn’t strictly
match the question. No points were deducted in that case.

(b) All words that contain a three-letter sequence that appears at least three times. (For
example, expressionlessness – ess appears three times – or hemidemisemiquaver, which
has 3 occurrences of emi.)

 \(...\).*\1.*\1

For this answer, we did allow [a-zA-Z] instead of . to match single characters,
but just [a-z] didn’t get full credit since it would miss upper case letters.

 CSE 374 Midterm Exam 5/04/09

 Sample Solution Page 4 of 7

Question 5. (20 points) gcc messages have a specific format. Each message contains
the name of the file, the line number where a problem was detected, the word “error” or
“warning”, and a description of the problem. There are colons separating the parts of the
messages, and sometimes, but not always, there are spaces either before or after the
colons. Here is a brief example:

 foo.c:7: error: 'n' undeclared (first use in this function)
 foo.c:14: error: parse error before 'g'
 error.c:12: warning: control reaches end of non-void function
 bar.c:5: error: 'ch' undeclared (first use in this function)
 bar.c:35: warning: implicit declaration of function 'malloc'

For this problem, write a bash script that reads a file containing gcc messages in this
format and writes to standard output a sorted list of every file name that appears in one or
more error messages. Files named in warning messages should only be included if they
also appear in an error message. Each file name should appear only once in the output,
and the list of file names should be sorted alphabetically. For example, if the script is run
on a file containing the above messages, the output should be:

 bar.c
 foo.c

(error.c does not appear in the list because that file name only appears in a warning
message.)

If the script is given no arguments or if there is more than one argument, or if the
argument does not specify an existing file (not a directory), the script should terminate
with an appropriate error message written to stdout. If the file does exist, you may
assume that it is a text file containing properly formatted gcc messages and you do not
need to check for further errors.

Hints: grep, sed, sort, and uniq (uniq copies its stdin to stdout, but if two or
more immediately consecutive lines in the input are the same, only the first of the
identical lines in that group is copied to stdout.)

Write your answer in the space provided on the next page.

 CSE 374 Midterm Exam 5/04/09

 Sample Solution Page 5 of 7

Question 5. (continued) Write your answer on this page. The sample messages from
the previous page are repeated below for reference (and perhaps inspiration)

 foo.c:7: error: 'n' undeclared (first use in this function)
 foo.c:14: error: parse error before 'g'
 error.c:12: warning: control reaches end of non-void function
 bar.c:5: error: 'ch' undeclared (first use in this function)
 bar.c:35: warning: implicit declaration of function 'malloc'

#!/bin/bash.

if [$# -ne 1]
then
 echo incorrect number of arguments
 exit 1
fi

if [! –f ”$1”]
then
 echo $1 is not a regular file
 exit 1
fi

grep ':.*error.*:' ”$1” | sed 's/\([^:]*\).*/\1/' | sort | uniq

Another solution for the main processing part is this:

grep ':.*error.*:' ”$1” | sed 's/\([a-zA-Z.]*\).*/\1/' |sort|uniq

The first answer is best; the second assumes that file names consist of only letters
and periods, but file names with other characters like dashes and numbers are
common, as are source files with names that don’t end in .c. Those errors would
have been deducted on a homework problem, but since this was a short exam, we let
it go. Similarly, we didn’t deduct points if you forgot the quotes around the $1
filename in the script.

It is important that the grep pattern search for “error” with colons on either side,
but not necessarily immediately adjacent, and the sed search pattern needs a .*
after the filename to match the rest of the line so that can be omitted in the
substitution part. Of course, answers that got the right results, but with a different
set of commands or patterns, got credit. One great answer for the sed part that
your instructor didn’t think of was sed 's/:.*//'.

The sort must be done before uniq; uniq will only filter out duplicate lines if
they are adjacent, it does not attempt to locate duplicates elsewhere in the input. A
similar result is obtained using the -u option on sort.

 CSE 374 Midterm Exam 5/04/09

 Sample Solution Page 6 of 7

Question 6. (15 points) Consider the following C program.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int main() {
 char *s = (char*)malloc(12*sizeof(char));
 char *t = (char*)malloc(15*sizeof(char));
 strcpy(s, "good");
 strcpy(t, "hi there");
 char *p = t+4;
 t = s;
 strcat(s, "bye");
 printf("s = %s\n", s);
 printf("t = %s\n", t);
 printf("p = %s\n", p);
 return 0;
}

(a) What output does this program produce when it is executed? (It does execute
successfully.) Feel free to draw diagrams showing memory to help answer the question
and to help us award partial credit if needed.

 s = goodbye
 t = goodbye
 p = here

(b) One of your colleagues noticed that this program allocates memory without freeing it,
and proposes that the following code be added right before return 0; to fix this.

 free(s);
 free(t);

Once this code is added, does it work and free the dynamic storage properly? Why or
why not?

No. One problem is that s and t both point to the same array, so this would free
the same storage twice. The other problem is that the 15-element array that t
originally pointed to has already been lost (leaked) when the assignment t=s was
executed, so there is no way to free it.

 CSE 374 Midterm Exam 5/04/09

 Sample Solution Page 7 of 7

Question 7. (20 points) (The small C programming exercise.) For this problem,
complete the definition of function main below so that it prints yes if the string xyzzy
appears as an argument on the command line that executes the program and prints no if
not. The argument list must contain the string xyzzy exactly as a single argument for
the program to print yes; if it is not an exact match the program should print no. For
example, if the program is run with this command line

 ./a.out there is a xyzzy here

the program should print yes. If the program is run with

 ./a.out this “contains xyzzy” but doesn’t match exactly

the program should print no. Add your code to the main program below. (Notice that
this program should only examine its argument list. It should not read any data files.)
Assume that any necessary library header files are already included. You don’t need to
write #includes.

 int main(int argc, char ** argv) {

 int k;

 // Search arguments for one that matches "xyzzy"
 // exactly. If found, print "yes" and exit.
 for (k = 0; k < argc; k++) {
 if (strcmp("xyzzy", argv[k]) == 0) {
 printf("yes");
 return 0;
 }
 }

 // no match, print "no” and exit
 printf("no");
 return 0;

 }

