CSE 373: Graphs

Chapter 9

Graphs

- A data structure useful for representing relationships between things
- A graph G is represented as $G = (V,E)$
 - V = a set of vertices (nodes)
 - E = a set of edges connecting vertices from V
- More general and arbitrary than trees (trees are a restricted type of graph)
Directed/Undirected Graphs

- In **directed** graphs, edges have a specific direction:

```
Han  Luke
    \____/
      Leia
```

- In **undirected** graphs, they don’t:

```
Han  Luke
    \____/
      Leia
```

• Vertices u and v are **adjacent** if $(u,v) \in E$

Weighted Graphs

weighted graphs store a weight with each edge:

```
Clinton  20  Mukilteo

Kingston  30  Edmonds

Bainbridge  35  Seattle

Bremerton  60
```

(nodes sometimes have weights too…)
Paths

A path is a list of vertices v_1, v_2, \ldots, v_n such that $(v_i, v_{i+1}) \in E$.

$p = \text{Seattle, Salt Lake City, Phoenix, San Antonio, Phoenix, Seattle}$

Path Length and Cost

- The length of a path is the number of edges
- Its cost is the sum of the edges’ weights

$\text{length}(p) = 5 \quad \text{cost}(p) = 11$
Simple Paths and Cycles

A *simple path* repeats no vertices (except the first can also be the last):
- *Seattle, Salt Lake City, Phoenix, San Antonio*
- *Seattle, Salt Lake City, San Antonio, Phoenix, Seattle*

A *cycle* is a path that starts and ends at the same node
- *Seattle, Salt Lake City, San Antonio, Phoenix, Seattle*
 (For undirected graphs edges cannot appear twice)

Directed Acyclic Graphs

Directed Acyclic Graphs (DAGs) are directed graphs with no cycles

```
main()  
solve()  
mult()  
pow()  
sqrt()  
```

trees ⊆ DAGs ⊆ directed graphs
Connectivity

- Undirected graphs are connected if there is a path between any two vertices
- Directed graphs are strongly connected if there is a path between any two vertices
- It is weakly connected if it’s connected when direction is ignored
- A complete graph is one that has an edge between every pair of vertices

Graph Implementations

Adjacency Matrix: A $|V| \times |V|$ array in which:
- element (u,v) is 1 if there is an edge (u,v)
- it is 0 otherwise
- for weighted graphs, store weights rather than 1/0

- space requirements?
Graph Implementations

Adjacent Lists: A $|V|$-ary array in which each entry stores a list of all adjacent vertices

Space requirements?

How could we index into an adjacency list or matrix when nodes are named?

Graph Applications

- Storing things that are graphs by nature (AI)
 - distances between cities
 - airline flights, travel options
 - relationships between people, things
 - distances between rooms in the game Clue
- Compilers
 - callgraph – which functions call which other ones
 - dependence graphs – which variables are defined and used at which statements