CSE 373: Sorting
(QuickSort)

Chapter 7

QuickSort

QuickSort:
- Another recursive divide-and-conquer sorting algorithm
- In practice, the fastest known sorting algorithm
Partitioning

Partitioning: Quicksort’s main operation
- given a list...
- choose a pivot element, \(p \), from the list
- divide the rest of the values into two sets:
 - those less than \(p \)
 - those greater than \(p \)
 - (for now, we’ll ignore those that are equal to \(p \))

Partitioning Example

(Assume we’ll use the first element as a pivot):

\[
\begin{array}{ccccccc}
7 & 4 & 8 & 6 & 9 & 2 & 5 & 3 \\
\end{array}
\]

Running time of partition?
QuickSort Overview

QuickSort: given a list of values...
- if the list contains zero or one elements, return it
- otherwise, partition the list
- call QuickSort recursively on each half
- concatenate the results of the recursive calls:
 QuickSort(small values) :: pivot :: QuickSort(big values)

QuickSort Example

input = 7, 4, 8, 6, 9, 2, 5, 3 (using first element as pivot)
QuickSort Call Tree

```
QuickSort (7, 4, 8, 6, 9, 2, 5, 3)
  /       \
QuickSort (4, 6, 2, 5, 3)  QuickSort (8, 9)
  |       |
QS (2, 3)  QS (6, 5)  QS ()  QS (9)
  |       |
QS ()  QS (3)  QS (5)  QS ()
```

Running Time *(Approximate & Optimistic)*

Assuming all pivots result in even partitions...

- ~linear work per step
- ~logn steps

```
= \(O(n) \times O(\log n) = O(n \log n)\)
```
Worst-Case Analysis

• What would be a worst-case partition step?

• What input would cause this worst case at every step (assuming pivot is first element)?

• What’s the running time of this worst-case?

Design Decision: Choosing Pivot

• first element – should never, never be used

• random element

• median

• median of three (first, middle, last?)

• middle element
In-Place Partitioning

1) swap the pivot \(p \) with the last element
2) set a pointer \(i \) to the first element
3) set a second pointer \(j \) to the second-to-last
4) walk \(i \) up the array until a value \(> p \) is found
5) walk \(j \) down the array to a value \(< p \)
6) swap elements pointed to by \(i \) and \(j \)
7) continue until \(i \) and \(j \) pass one another
8) when they do, swap \(i \)'s element with \(p \)

In-Place Partitioning Example

input = 7, 4, 8, 6, 9, 2, 5, 3 (using median-of-three pivot)
Quicksort Best-Case Analysis

Use a recurrence relation:

T(0) = k
T(1) = k
T(n) = 2T(n/2) + c \cdot n

Solve using repeated substitution:

Quicksort Overview

- **Running Times:**
 - Best Case: \(O(n \log n)\)
 - Worst Case: \(O(n^2)\) – *but very unlikely*
 - Average Case: \(O(n \log n)\) – shown in book

- **Space Requirement:** sorts in-place
Design Details

- Sort small arrays \((n < 20?)\) using insertion sort
 - insertion sort faster for small problems
 - all Quicksorts on big lists must also sort small lists

- **How to handle elements equal to pivot?**
 - annoying detail; see book

- **Quickselect** – a modification of Quicksort to do selection in \(O(n)\) time (on average)

Bucket sort

Useful for sorting integers of a fixed range:

- Declare an array: `int count[range]`
- Initialize `count[\cdot]\)` to all 0’s
- Iterate over the input list
- For each value \(v\), increment `count[v]`
- Once done, print out `count[0]'s, `count[1]'s, ...

Running time?