CSE 373: Sorting
(Shellsort and Mergesort)

Chapter 7

Drawback of Adjacent Swap Sorts

- Each swap only fixes a single inversion
- Thus, elements that are far out of place must be swapped with many values instead of being moved into place more directly:

4 5 7 8 9 2

- This is the motivation for Shellsort (named after its inventor, Donald Shell): try to move values to their general area quickly, then fix them up
Shellsort

- Uses \(p \) phases
- The phases are characterized by an *increment sequence* of integers: \(h_1, h_2, h_3, \ldots, h_p \):
 - Typically, \(h_i > h_{i+1} \)
 - \(h_p = 1 \) (last phase is insertion sort)
- In phase \(k \), we compare and swap values that are \(h_k \) positions apart until they are sorted
- This essentially performs \(h_k \) independent insertion sorts in phase \(k \)
Increment Sequences

- Designing increment sequences:
 - Running time is proportional to the number of increments, so we don’t want too many
 - But just having one would give us insertion sort
- Worst-case running time:
 \[\Sigma_i (h_i (n/h_i)^2) \]: \(h_i \) insertion sorts of \(n/h_i \) elements each;
 (recall: insertion sort has worst-case of \(O(n^2) \))

Common Increment Sequences

- Shell’s original sequence:
 \[h = n/2, n/4, n/8, \ldots, 2, 1 \]
 - probably the most intuitive sequence
 - but, it has a worst-case of \(O(n^2) \)
- Hibbard’s sequence:
 \[h = 2^{k-1}, \ldots, 15, 7, 3, 1 \]
 - adjacent numbers are relatively prime
 - leads to a worst-case of \(O(n^{1.5}) \)
The Merge Operation

- Given two sorted lists, \texttt{Merge()} combines them into a single sorted list:

\[
\begin{array}{cccc}
4 & 6 & 7 & 8 \\
2 & 3 & 5 & 9 \\
\end{array}
\]

- Running time of \texttt{Merge()}?

Mergesort

Elegant recursive sorting algorithm:
- if the input is one element, it’s sorted; return
- otherwise, split the input into two equal-sized lists
- call \texttt{Mergesort()} recursively on each list
- merge the sorted lists that are returned
Mergesort Example

Input = 7, 4, 8, 6, 9, 2, 5, 3

Mergesort Call Tree

Mergesort (7, 4, 8, 6, 9, 2, 5, 3)

Mergesort (7, 4, 8, 6)

Mergesort (9, 2, 5, 3)

Mergesort (7)

Mergesort (4)

Mergesort (8)

Mergesort (6)

Mergesort (9)

Mergesort (2)

Mergesort (5)

Mergesort (3)
Binary Search Running Time

\[\text{constant work per step} \]

\[\text{log}_2 n \text{ steps} \]

= \(0(1) \times O(\log n) = O(\log n) \)

Mergesort Running Time

\[\text{linear work per step} \]

\[\text{log}_2 n \text{ steps} \]

= \(O(n) \times O(\log n) = O(n\log n) \)

Disadvantages?