CSE 373: Sorting

Chapter 7

Introduction to Sorting

Sorting: One of the most fundamental algorithms

Input: An array $A[]$ of values and its size, n.

Output: The array stored in sorted order:
- if $i < j$ then $A[i] \leq A[j], \forall i,j \leq n$

Goals: sort as quickly as possible
- ideally, use $O(1)$ memory (other than $A[]$)
- handle pre-sorted lists quickly
Insertion Sort

Insertion Sort: One of the simplest sorting algorithms, based on List ADT `Insert()`.

- \(n-1 \) passes
- after pass \(i \), elements \(0..i \) will be in sorted order
- in pass \(i \), we ripple the \(i^{th} \) element down the array until it’s sorted (with respect to elements \(0..i-1 \))

Insertion Sort Example

```
position: 0  1  2  3  4  5
input:    7  4  9  5  8  2
pass 1:
pass 2:
pass 3:
pass 4:
pass 5:
```
Insertion Sort Analysis

- Why ripple down rather than up?
- Best case input? Running time?
- Worst case input? Running time?

Adjacent Swap Algorithms

A class of algorithms that sort simply by comparing and swapping adjacent elements
- Insertion Sort
- Bubble Sort
- Selection Sort
Inversions

- Given $A[]$, an inversion is a pair (i,j) such that $i < j$, but $A[i] > A[j]$.
 - How many inversions in our example?
 - 7 4 9 5 8 2

- The number of inversions in $A[]$ equals the number of adjacent swaps required to sort it
 - Why?

Average Case Analysis

Q: What is the average number of inversions in a random input array?

A: Consider an arbitrary list L with n unique values
 - Consider the reversal of the list L_R
 - Every pair (i,j) represents an inversion in L or in L_R
 - The total number of distinct (i,j) pairs is $n(n-1)/2$
 - On average, half of these will be in L, half will be in L_R
 - Thus, the average array has $n(n-1)/4$ inversions
 - So, adjacent swap algorithms run in $\Theta(n^2)$ on average
Heapsort

- Naive algorithm:
 - Run `BuildHeap()` on the input array
 - Call `DeleteMin()` \(n \) times, storing the results in an output array

- Running Time?

- Disadvantage?

- How can we fix this?
Improved Heapsort

- Use the heap’s array to store the sorted values
- Recall: a k-element heap uses the first k positions of its implementing array
- Thus, whenever we delete an element from the heap, store it at the end of the array
- What does this give us?
- How to fix it?

Treesort?

- BSTs can obviously be used to sort input
 - **Insert** all values
 - traverse tree in-order, copying to output array
- This is rarely done in practice (unless a tree is already being used to store the data)
 - asymptotically similar to Heapsort
 - **but** trees require more memory
 - **and** can’t be done using only input array memory
 - might as well use Heapsort