CSE 373: Asymptotic Analysis

Chapter 2

Recall: FindMajor()

/* print students in a class with major */
void FindMajor(class c, dept major) {
 int i;
 for (i=0; i<num_students; i++) {
 if (c[i].major == major) {
 printf("%s %s\n", c[i].first, c[i].last);
 }
 }
}

How fast is this routine?
Exact Times are Tricky

How much time does \textbf{FindMajor}() require?
- number of iterations \times work per iteration:

Simplifying Assumption

Constants are insignificant compared to the \textit{asymptotic} behavior of the program
- expressed as a function of the problem size
- expressed using functions like: \(n, n^2, \log n, 2^n \), etc.
Getting some Intuition...

Using the Computer...
On A Larger Scale...

Ignoring 2^n
Skipping n^3
On Yet a Larger Scale

The Moral

Performance can be broken down into primary and secondary effects
- primary effects: asymptotic growth pattern
- secondary effects: constant factors, less significant terms

- In this class, we'll mainly be concerned with primary effects (asymptotic analysis)
- In the real world, secondary effects are also often worth paying attention to (after the primary ones)
Formally...

Given an algorithm whose running time is $T(n)$...
- $T(n) = O(f(n))$ if there are positive constants c and n_0 such that $T(n) \leq c \cdot f(n)$ for all $n \geq n_0$
 - $\log n, n, 100n = O(n)$
- $T(n) = \Omega(f(n))$ if there are positive constants c and n_0 such that $T(n) \geq c \cdot f(n)$ for all $n \geq n_0$
 - $n, n^2, 100 \cdot 2^n, n^{\log n} = \Omega(n)$
- $T(n) = \Theta(f(n))$ if $T(n) = O(f(n))$ and $T(n) = \Omega(f(n))$
 - $n, 2n, 100n, n + \log n = \Theta(n)$

Typical Growth Rates (in order)

constant: $O(1)$
logarithmic: $O(\log n)$
log-squared: $O(\log^2 n)$
linear: $O(n)$
“$n \log n$”: $O(n \log n)$
quadratic: $O(n^2)$
cubic: $O(n^3)$
exponential: $O(2^n)$
General Rules of Thumb

- Constant factors can always be dropped
 - \(5n = O(n)\)
- In sums, smaller terms can always be dropped
 - \(3n \cdot \log n + n^2 + \log n = O(n^2)\)

Analyzing Code

- \(C/C++\) ops – constant value
- consecutive statements – add individual costs
- loops – multiply cost of loop body by number of iterations
- conditionals – maximum cost of branches
- function calls – evaluate cost of function body

Above all, use your brain
Reconsider: FindMajor()
/* print students in a class with major */
void FindMajor(class c, dept major) {
 int i;
 for (i=0;i<num_students;i++) {
 if (c[i].major == major) {
 cout << c[i].first << c[i].last;
 }
 }
}

How fast is this routine? At best?
At worst?
On average?

FindAMajor()
/* return pointer to a student in major */
student *FindAMajor(class c, dept major) {
 int i;
 for (i=0;i<num_students;i++) {
 if (c[i].major == major) {
 return &(c[i]);
 }
 }
}

What’s the best case for this routine?
The worst case?
The average case?
Asymptotic Analysis

- Determine what characterizes a problem’s size
- Express how much time and memory an algorithm requires as a function of its problem size using $O()$, $\Omega()$, or $\Theta()$
 - worst case
 - best case
 - average case
 - common case
 - overall

Examples from Lecture

<table>
<thead>
<tr>
<th></th>
<th>Prob Size</th>
<th>Space</th>
<th>Best Time</th>
<th>Worst Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>UW Registry</td>
<td>TakingClass()</td>
<td>PrintSchedule()</td>
<td>MakeClassList()</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iterative fact()</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>recursive fact()</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PaintFill()</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>linear search</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>binary search</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>