CSE 373: Introduction

Chapter 1

Basic Math

- Things to review on your own (§1.2.1–1.2.5)
 - exponents
 - logarithms
 - series
 - modular arithmetic
 - proof techniques (except inductive)
Notes on Logarithms

• Understanding $\log_b x$
 - usually defined: $\log_b x = y \Rightarrow b^y = x$
 (log x is the power to which b must be taken to get x)
 - more useful: $\log_b x$ is the number of times you must divide x by b to get 1

 2^3: \[
 \begin{array}{cccccccccc}
 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
 \end{array}
 \]
 $\log_2 8 = 3$

 2^2: \[
 \begin{array}{cccccccccc}
 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
 \end{array}
 \]
 $\log_2 4 = 2$

 2^1: \[
 \begin{array}{cccccccccc}
 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
 \end{array}
 \]
 $\log_2 2 = 1$

 2^0: \[
 \begin{array}{cccccccccc}
 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
 \end{array}
 \]
 $\log_2 1 = 0$
• b is almost always 2 and omitted by default

UW, Spring 1999 CSE 373 – Data Structures and Algorithms Brand Chamberlain

Recursion

Recursive function: A function that calls itself

– Analogous to recurrence relations in math:

 \[0! = 1 \quad \text{fact}(0) = 1 \]
 \[x! = x \cdot (x-1)! \quad \text{fact}(x) = x \cdot \text{fact}(x-1) \]

– Recursively in C:

  ```c
  int fact(int x) {
    if (x == 0) {
      return 1;
    } else {
      return x * fact(x-1);
    }
  }
  ```

UW, Spring 1999 CSE 373 – Data Structures and Algorithms Brand Chamberlain
Disadvantages of Recursion

- Function calls are expensive
 - take more time than standard operations
 - require memory proportional to the call depth
- Simple cases can be rewritten with loops:

```c
int fact(int x) {
    if (x == 0) {
        return 1;
    } else {
        return x * fact(x-1);
    }
}
```

Recursion II

Fibonacci Numbers:

- fib_0 = 1
- fib_1 = 1
- fib_x = fib_x-1 + fib_x-2

- Recursively in C:

```c
int fib(int x) {

}
```
Disadvantages of Recursion II

- Elegance disguises redundant computation
- What is the call chain like for fib(5) and fib(10)?

Does fib() have a simple iterative rewrite?

Recursion III

```c
void PaintFill(int pixel[][], int x, int y);
- pixels are either black (1) or white (0)
- starting at pixel (x,y) change white pixels to black, stopping at boundaries
```

UW, Spring 1999 CSE 373 – Data Structures and Algorithms Brad Chamberlain
Recursion III (continued)

```c
void PaintFill(int pixel[][], int x, int y) {
}
```

Does PaintFill() have an iterative rewrite?

Recursion Summary

- Recursive routines must:
 - have a base case
 - always make progress towards the base case
- Be sure to keep an eye out for:
 - recursive calls that have simple iterative rewrites
 - redundant computation
Inductive Proofs

Inductive proof – A way to prove a property true for an infinite number of (enumerable) cases
- prove property true for base case(s)
- assume it’s true for the first $k-1$ instances, and use them to prove it’s true for the k^{th} instance

Simple Inductive Proof

Prove: Every complete binary tree of depth d contains $2^{d+1} - 1$ nodes

![Diagram of a complete binary tree](depth=3)
Simple Inductive Proof (cont’d)

Proof (by induction):
- Let P(i) = “A complete binary tree of depth i contains $2^{i+1} - 1$ nodes”
- We must prove P(i) true for all $i \geq 0$
- base case: Prove P(0) is true

Proof (continued):
- inductive step: Assuming P(0), P(1), ..., P(k-1) are true, prove P(k) is true

- Therefore, for all $i \geq 0$, P(i) is true
Induction and Recursion

Induction and Recursion are analogous concepts

- both use base cases
- both solve “big” problems based on the assumption that “smaller” problems are solved in a similar way
- both require that you assume the recursive/inductive step works without checking every case
- both have similar pitfalls
 - determining the number of base cases
 - handling the base case(s) correctly
 - getting the inductive step to work for all non-base cases

An Incorrect Inductive Proof

Prove: When \(h \) horses are within a fenced area, they are all the same color

Proof (by induction):

- Let \(P(i) \) = “when \(i \) horses are within a fenced area, they are all the same color”
- **base case:** when 1 horse is in a fenced area, it is the same color as itself. Therefore, \(P(1) \) is true.
An Incorrect Inductive Proof (cont’d)

- **inductive step:** Assume P(1), P(2), ..., P(k-1) are true.
 - Consider k horses in a fenced-in area.
 - Lead one of the horses, a, out of the area such that k-1 horses remain. Since P(k-1) is true, the remaining horses must all be the same color.
 - Now lead a back in and lead a different horse, b, out, once again leaving k-1 horses within the fence. Since P(k-1) is true, these horses must also all be the same color.
 - Since both subsets of k-1 horses were the same color, a and b must be the same color, and therefore all k horses must be the same color.
 - Therefore P(1), ..., P(k-1) ⇒ P(k) is true