CSE 373: Graphs
(Shortest Paths, Minimum Spanning Trees)

Chapter 9

Weighted Shortest Paths

- Breadth-first search is no longer sufficient:

- New strategy?
Dijkstra’s Algorithm

- Classic algorithm for solving shortest path problems for weighted graphs
- A greedy algorithm (makes decisions without thinking about the future consequences)
- Intuition:
 - shortest path from source vertex to itself is 0
 - cost of going to its adjacent nodes equals edge weights
 - cheapest edge weight is shortest path to that node
 - continue recursively picking cheapest reachable node

Implementing Dijkstra’s Algorithm

More precisely:
- keep track of the cost of the shortest path found so far from s to each vertex...
 - initialize this cost to ∞ for all vertices
 - except s for which it is initialized to 0
- take the vertex with the shortest path found so far, v, and mark it as “done”
- for each node w adjacent to v, consider whether moving to w after taking the short path from s to v would be better than the best seen so far
- repeat until all vertices are “done”
Dijkstra’s Algorithm: Example

Minimum Spanning Trees

spanning tree: a subset of edges from a connected graph that...
...touch all vertices (span the graph)
...form a tree (are connected and form no cycles)

minimum spanning tree: the spanning tree with the smallest total cost
Prim’s Algorithm

Prim’s Algorithm: (another greedy algorithm)
- a way of finding minimum spanning trees:
 - start with an arbitrary vertex
 - pick the smallest edge adjacent to this vertex
 - continue picking the smallest edge that connects a new vertex to a vertex that’s already been linked in

Prim’s Algorithm Implementation

More precisely:
- for each vertex, keep track of the cheapest edge that could attach it to the growing tree
 - initialize all nodes to ∞
- pick an arbitrary vertex as the initial tree
 - mark its cost as 0
- update its adjacent vertices’ cheapest edge cost
- pick the cheapest edge that attaches a new vertex
- see if any of its edges improve the cheapest edges of its adjacent vertices
Prim’s Algorithm Example

![Graph](image)

Kruskal’s Algorithm

Kruskal’s Algorithm:
- Another way to find minimum spanning trees
- Another greedy algorithm:
 - continually add the cheapest edge that would not cause a cycle to form

![Graph](image)
Implementing Kruskal’s Algorithm

- How to pick shortest edges?

- How to ensure an edge won’t cause a cycle?
 - use a union/find algorithm (described in Chapter 8, which we skipped...)

Graph Summary

- More theoretical than much of what we’ve studied
- Yet, plenty of practical applications:
 - cheapest flights from one place to another (shortest path problem)
 - length of wire required to connect several terminals (minimum spanning tree problem)
 - fastest communication path between two computers (shortest path problem)