CSE 373: Sorting
(Quick sort, Quick select, Bucket sort)

Chapter 7

Quick sort

Quick sort:
- Another recursive divide-and-conquer sorting algorithm
- In practice, the fastest known sorting algorithm
Partitioning

Partitioning: Quicksort’s main operation
- given a list...
- choose a pivot element, \(p \), from the list
- divide the rest of the values into two sets:
 - those less than \(p \)
 - those greater than \(p \)
 - (for now, we’ll ignore those that are equal to \(p \))

Partitioning Example

(Assume we’ll use the first element as a pivot):

\[
7 \quad 4 \quad 8 \quad 6 \quad 9 \quad 2 \quad 5 \quad 3
\]

Running time of partition?
QuickSort Overview

QuickSort: given a list of values...
- if the list contains zero or one elements, return it
- otherwise, partition the list
- call QuickSort recursively on each half
- concatenate the results of the recursive calls:
 QuickSort(small values) :: pivot :: QuickSort(big values)
Quicksort Call Tree

```
Quicksort (7, 4, 8, 6, 9, 2, 5, 3)
```

```
Quicksort (4, 6, 2, 5, 3)
```

```
Quicksort (8, 9)
```

```
QS (2, 3)  QS (6, 5)
```

```
QS ()  QS (3)  QS (5)  QS ()
```

Running Time (Approximate & Optimistic)

Assuming all pivots result in even partitions...

```
~linear work per step
```

```
~\log n steps
```

```
\[= \Theta(n \times \log n) = \Theta(n \log n)\]
```
Worst-Case Analysis

- What would be a worst-case partition step?

- What input would cause this worst case at *every* step (assuming pivot is first element)?

- What’s the running time of this worst-case?

Design Decision: Choosing Pivot

- first element – should *never, never* be used

- random element

- median

- median of three (first, middle, last?)

- middle element
In-Place Partitioning

1) swap the pivot p with the last element
2) set a pointer i to the first element
3) set a second pointer j to the second-to-last
4) walk i up the array until a value $> p$ is found
5) walk j down the array to a value $< p$
6) swap elements pointed to by i and j
7) continue until i and j pass one another
8) when they do, swap i’s element with p

In-Place Partitioning Example

Input = 7, 4, 8, 6, 9, 2, 5, 3 (using median-of-three pivot)
Quicksort Best-Case Analysis

Use a recurrence relation:

\[
T(0) = k \\
T(1) = k \\
T(n) = 2T(n/2) + cn
\]

Solve using repeated substitution:

Quicksort Overview

- **Running Times:**
 - Best Case: \(O(n\log n)\)
 - Worst Case: \(O(n^2)\) – but very unlikely
 - Average Case: \(O(n\log n)\) – shown in book

- **Space Requirement:** sorts in-place
Design Details

- Sort small arrays \(n < 20 \) using insertion sort
 - insertion sort faster for small problems
 - all Quicksorts on big lists must also sort small lists
- How to handle elements equal to pivot?
 - annoying detail; see book
- *Quickselect* – a modification of Quicksort to do selection in \(O(n) \) time (on average)

Bucket sort

Useful for sorting integers of a fixed range:
- Declare an array: `int count [range]`
- Initialize `count []` to all 0’s
- Iterate over the input list
- For each value \(v \), increment `count [v]`
- Once done, print out `count [0]` 0’s, `count [1]` 1’s, ...
 `count [i]` \(i \)’s etc.

Running time?