CSE 373: Sorting
(Shellsort, Heapsort, and Mergesort)

Chapter 7

Drawback of Adjacent Swap Sorts

- Each swap only fixes a single inversion
- Thus, elements that are far out of place must be swapped with many values instead of being moved into place more directly:

 4 5 7 8 9 2

- This is the motivation for Shellsort (named after its inventor, Donald Shell): try to move values to their general area quickly, then fix them up
Shellsort

- Uses p phases
- The phases are characterized by an increment sequence of integers: $h_1, h_2, h_3, \ldots, h_p$:
 - Typically, $h_i > h_{i+1}$
 - $h_p = 1$ (last phase is insertion sort)
- In phase k, we compare and swap values that are h_k positions apart until they are sorted
- This essentially performs h_k independent insertion sorts in phase k

Shellsort Example

$h = 5, 3, 2, 1$ \hspace{1cm} input = 7, 4, 8, 6, 9, 2, 5, 3
Increment Sequences

- Designing increment sequences:
 - Running time is proportional to the number of increments, so we don’t want too many
 - But just having one would give us insertion sort
- Worst-case running time:
 \[\sum_i (h_i (n/h_i)^2) : h_i \text{ insertion sorts of } n/h_i \text{ elements each;}
 \text{(recall: insertion sort has worst-case of } \mathcal{O}(n^2)) \]

Common Increment Sequences

- Shell’s original sequence:
 \[h = n/2, n/4, n/8, \ldots, 2, 1 \]
 - probably the most intuitive sequence
 - but, it has a worst-case of \(\mathcal{O}(n^2) \)
- Hibbard’s sequence:
 \[h = 2^{k-1}, \ldots, 15, 7, 3, 1 \]
 - adjacent numbers are relatively prime
 - leads to a worst-case of \(\mathcal{O}(n^{3}) \)
Heapsort

- Naive algorithm:
 - Run `buildHeap()` on the input array
 - Call `deleteMin()` \(n \) times, storing the results in an output array

- Running Time?

- Disadvantage?

- How can we fix this?
Improved Heapsort

- Use the heap’s array to store the sorted values
- *Recall:* a k-element heap uses the first k positions of its implementing array
- Thus, whenever we delete an element from the heap, store it at the end of the array
- What does this give us?
- How to fix it?

Treesort?

- BSTs can obviously be used to sort input
 - *insert()* all values
 - traverse tree in-order, copying to output array
- This is rarely done in practice (unless a tree is already being used to store the data)
 - asymptotically similar to Heapsort
 - *but* trees require more memory
 - *and* can’t be done using only input array memory
 - might as well use Heapsort
The Merge Operation

Given two sorted lists, \texttt{merge()} combines them into a single sorted list:

\begin{align*}
\begin{array}{ccccccc}
4 & 6 & 7 & 8 & 2 & 3 & 5 & 9
\end{array}
\end{align*}

- Running time of \texttt{merge()}?

Mergesort

Elegant recursive sorting algorithm:

- if the input is one element, it’s sorted; return
- otherwise, split the input into two equal-sized lists
- call \texttt{Mergesort()} recursively on each list
- call \texttt{merge()} the sorted lists that are returned
Mergesort Example

Input = 7, 4, 8, 6, 9, 2, 5, 3

Mergesort Call Tree

Mergesort (7, 4, 8, 6, 9, 2, 5, 3)

- **Mergesort (7, 4, 8, 6)**
 - **MS (7)**
 - **MS (4)**
 - **MS (8)**
 - **MS (6)**

- **Mergesort (9, 2, 5, 3)**
 - **MS (9)**
 - **MS (2)**
 - **MS (5)**
 - **MS (3)**
Binary Search Running Time

\[\text{constant work per step} \]

\[\log n \text{ steps} \]

\[= O(1) \times O(\log n) = O(\log n) \]

Mergesort Running Time

\[\text{linear work per step} \]

\[\log n \text{ steps} \]

\[= O(n) \times O(\log n) = O(n \log n) \]

Disadvantages?