CSE 373: Selection & Simple Sorting

Selection: bits of Chapters 1, 4, 6, 7
Simple Sorting: Chapter 7

The Selection Problem

Goal: Given a list of n numbers, find the k^{th} smallest

Special Cases:
- $k = 1$: findMin()
- $k = n$: findMax()
- $k = n/2$: the median of the list

Any ideas?
Selection Brainstorming

Which of the data structures that we’ve studied would be appropriate for selection?

- List
- Stack
- Queue
- Tree
- BST
- Hash Table
- Heap
- must be able to store data
- must maintain some sort of ordering information

List-Based Selection

Naive algorithm:
- Insert each element into a second list using insertSorted()
- Return the element in the kth position
- Running time?

Slightly improved algorithm:
- Store only the k smallest elements seen so far
- Running time?
Tree-Based Selection

Naive Algorithm:
- \texttt{insert}() all elements into a BST
- Traverse the tree using an in-order traversal
- Count off until we reach the \(k\)th element
- Running time?

Improved Algorithm?

Heap-Based Selection

Naive Algorithm:
- \texttt{buildHeap}() all elements into a min-heap
- Perform \texttt{deleteMin}() \(k-1\) times
- The next \texttt{deleteMin}() returns the target value
- Running time?

Improved Algorithm?
Relating Selection and Sorting

If we were to do selections for \(k = 1, 2, \ldots, n \), we would end up with a sorted list
- Running time?

Alternatively, if we were to sort our input list, we could do any selection in \(O(1) \) time
- Running time?

Motivation for Sorting

- Sorted arrays allow us to do binary searches
- They also allow us to do fast selection
- The mode could be computed trivially in \(O(n) \) time if the input was sorted

\(\textit{but perhaps most importantly…} \)
- Humans tend to like things in sorted order

\textit{How could we use our data structures to sort?}

\textit{Which would be appropriate? Efficient?}
Introduction to Sorting

Sorting: One of the most fundamental algorithms

Input: An array A[] of values and its size, n.

Output: The array stored in sorted order:
if i < j then A[i] ≤ A[j], ∀i,j ≤ n

Goals: sort as quickly as possible
- ideally, use O(1) memory (other than A[])
- handle pre-sorted lists quickly

Insertion Sort

Insertion Sort: One of the simplest sorting algorithms, based on List ADT `insert()`.

- n-1 passes
- after pass i, elements 0..i will be in sorted order
- in pass i, we ripple the ith element down the array until it’s sorted (with respect to elements 0..i-1)
Insertion Sort Example

<table>
<thead>
<tr>
<th>position</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td>7</td>
<td>4</td>
<td>9</td>
<td>5</td>
<td>8</td>
<td>2</td>
</tr>
</tbody>
</table>

pass 1:
pass 2:
pass 3:
pass 4:
pass 5:

Insertion Sort Analysis

- Why ripple down rather than up?
- Best case input? Running time?
- Worst case input? Running time?
Adjacent Swap Algorithms

A class of algorithms that sort simply by comparing and swapping adjacent elements
- Insertion Sort
- Bubble Sort
- Selection Sort

Inversions

- Given A[], an inversion is a pair \((i, j)\) such that \(i < j\), but \(A[i] > A[j]\).
 - How many inversions in our example?
 - 7 4 9 5 8 2

- The number of inversions in A[] equals the number of adjacent swaps required to sort it
 - Why?
Average Case Analysis

Q: What is the average number of inversions in a random input array?

A: Consider an arbitrary list \(L \) with \(n \) unique values

Consider the reversal of the list \(L_R \)

Every pair \((i,j)\) represents an inversion in \(L \) or in \(L_R \)

The total number of distinct \((i,j)\) pairs is \(n(n-1)/2 \)

On average, half of these will be in \(L \), half will be in \(L_R \)

Thus, the average array has \(n(n-1)/4 \) inversions

So, adjacent swap algorithms run in \(\Theta(n^2) \) on average