CSE 373: Introduction

Chapter 1

Math Review

- Things to review on your own (§1.2.1–1.2.5)
 - exponents
 - logarithms
 - series
 - modular arithmetic
 - proof techniques
Brad’s Take on Logarithms

- Understanding $\log_b x$
 - textbook definition: $\log_b x = y \Rightarrow b^y = x$
 (log$_b x$ is the power to which b must be taken to get x)
 - more useful: log$_b x$ is the number of times you must divide x by b to get 1
 23: \[\begin{array}{cccccc}
 & & & & & \\
 & & & & & \\
 & & & & & \\
 & & & & & \\
 & & & & & \\
 & & & & & \\
 & & & & & \\
 & & & & & \\
 & & & & & \\
 & & & & & \\
 & & & & & \\
 & & & & & \\
 & & & & & \\
 \end{array} \]
 $\log_2 8 = 3$

 22: \[\begin{array}{cccccc}
 & & & & & \\
 & & & & & \\
 & & & & & \\
 \end{array} \]
 $\log_2 4 = 2$

 21: \[\begin{array}{cccc}
 & & & \\
 \end{array} \]
 $\log_2 2 = 1$

 20: \[\begin{array}{cccc}
 \end{array} \]
 $\log_2 1 = 0$

- b is almost always 2 and omitted by default

Brad’s Take on Series I

1 + 2 + 3 + 4 + ... + n = ?

Mathematically:

=
Brad’s Take on Series I (cont’d)

1 + 2 + 3 + 4 + ... + n = ?

Geometrically:

\[\sum_{i=1}^{n} i = \]

Brad’s Take on Series II

1 + 2 + 4 + 8 + ... + n/2 + n = ?

Geometrically:

\[\sum_{i=1}^{n/2} 2^i = \]
C++ Review

- Classes:
 - constructors/destrokers
 - separation of interface and implementation
 - vector and string classes
- Pointers
- Dynamic memory allocation: new, delete
- Parameter passing, return values
- Templates (we’ll cover briefly in class)

Recursion

Recursive function: A function that calls itself
- Analogous to recurrence relations in math:
 0! = 1
 x! = x · (x-1)! fact(0) = 1
 fact(x) = x · fact(x-1)
- Recursively in C++:
Disadvantages of Recursion

- Function calls are *expensive*:
 - take more time than standard operations
 - require memory proportional to the call depth
- Simple cases can be rewritten with loops:

```c
int fact(int x) {
    if (x == 0) {
        return 1;
    } else {
        return x * fact(x-1);
    }
}
```

```
int product;  
product = 1;  
while (x > 0) {
    product *= x;  
    x--;  
}
return product;
```

Recursion II

Fibonacci Numbers:

\[
\begin{align*}
\text{fib}_0 &= 1 \\
\text{fib}_1 &= 1 \\
\text{fib}_x &= \text{fib}_{x-1} + \text{fib}_{x-2}
\end{align*}
\]

- Recursively in C++:

```c
int fib(int x) {
    // Implementation
}
```
Disadvantages of Recursion II

- Elegance disguises redundant computation
- What is the call chain like for $\text{fib}(5)$? $\text{fib}(10)$?

- Does $\text{fib}()$ have a simple iterative rewrite?

Recursion III

```c
void PaintFill(int pixel[][], int x, int y);
- pixels are either black (1) or white (0)
- starting at pixel $(x,y)$ change white pixels to black, stopping at boundaries
```

![Image of paint fill algorithm](image-url)
Recursion III (continued)

```c
void PaintFill(int pixel[][], int x, int y) {
    // Recursive implementation
}

Does PaintFill() have an iterative rewrite?
```

Recursion Summary

- Recursive routines must:
 - have a base case
 - always make progress towards the base case
- Be sure to keep an eye out for:
 - recursive calls that have simple iterative rewrites
 - redundant computation
Inductive Proofs

Inductive proof – A way to prove a property true for an infinite number of (enumerable) cases
 - prove property true for base case(s)
 - assume it’s true for the first k-1 instances, and use them to prove it’s true for the k^th instance

Simple Inductive Proof

Prove: Every complete binary tree of depth d contains 2^{d+1} - 1 nodes

![Diagram of a complete binary tree with depth 3]
Simple Inductive Proof (cont’d)

Proof (by induction):
- Let P(i) = “A complete binary tree of depth i contains \(2^{i+1} - 1\) nodes”
- We must prove P(i) true for all \(i \geq 0\)
- base case: Prove P(0) is true

Proof (continued):
- inductive step: Assuming P(0), P(1), ..., P(k-1) are true, prove P(k) is true

- Therefore, for all \(i \geq 0\), P(i) is true
Induction and Recursion

Induction and Recursion are analogous concepts
- both use base cases
- both solve “big” problems based on the assumption that “smaller” problems are solved in a similar way
- both require that you assume the recursive/inductive step works without checking every case
- both have similar pitfalls
 - determining the number of base cases
 - handling the base case(s) correctly
 - getting the inductive step to work for all non-base cases

An Incorrect Inductive Proof

Prove: When \(h \) horses are within a fenced area, they are all the same color

Proof (by induction):
- Let \(P(i) = \) “when \(i \) horses are within a fenced area, they are all the same color”
- **base case:** when 1 horse is in a fenced in area, it is the same color as itself. Therefore, \(P(1) \) is true.
- **inductive step:** Assume \(P(1), P(2), \ldots, P(k-1) \) are true.
 - Consider \(k \) horses in a fenced-in area.
 - Lead one of the horses, \(a \), out of the area such that \(k-1 \) horses remain. Since \(P(k-1) \) is true, the remaining horses must all be the same color.
 - Now lead \(a \) back in and lead a different horse, \(b \), out, once again leaving \(k-1 \) horses within the fence. Since \(P(k-1) \) is true, those horses must also all be the same color.
 - Since both subsets of \(k-1 \) horses were the same color, \(a \) and \(b \) must be the same color, and therefore all \(k \) horses must be the same color.
- Therefore \(P(1), \ldots, P(k-1) \Rightarrow P(k) \) is true