
CSE 373: P vs NP; reductions

Michael Lee
Wednesday, Mar 7, 2018

1

Warmup

Warmup
Remind your neighbor:

I What is a decision-problem?

A yes-or-no question

I What is P, EXP, and NP?

1. P is the set of all decision problems that can be solved in
worst-case polynomial time

2. EXP is the set of all decision problems that can be solved in
worst-case exponential time

3. NP is the set of all decision problems where we can verify all
“yes” answers in worst-case polynomial time

2

Warmup

Warmup
Remind your neighbor:

I What is a decision-problem?
A yes-or-no question

I What is P, EXP, and NP?

1. P is the set of all decision problems that can be solved in
worst-case polynomial time

2. EXP is the set of all decision problems that can be solved in
worst-case exponential time

3. NP is the set of all decision problems where we can verify all
“yes” answers in worst-case polynomial time

2

Warmup

Warmup
Remind your neighbor:

I What is a decision-problem?
A yes-or-no question

I What is P, EXP, and NP?
1. P is the set of all decision problems that can be solved in

worst-case polynomial time

2. EXP is the set of all decision problems that can be solved in
worst-case exponential time

3. NP is the set of all decision problems where we can verify all
“yes” answers in worst-case polynomial time

2

Warmup

Warmup
Remind your neighbor:

I What is a decision-problem?
A yes-or-no question

I What is P, EXP, and NP?
1. P is the set of all decision problems that can be solved in

worst-case polynomial time
2. EXP is the set of all decision problems that can be solved in

worst-case exponential time

3. NP is the set of all decision problems where we can verify all
“yes” answers in worst-case polynomial time

2

Warmup

Warmup
Remind your neighbor:

I What is a decision-problem?
A yes-or-no question

I What is P, EXP, and NP?
1. P is the set of all decision problems that can be solved in

worst-case polynomial time
2. EXP is the set of all decision problems that can be solved in

worst-case exponential time
3. NP is the set of all decision problems where we can verify all

“yes” answers in worst-case polynomial time

2

Final

Final logistics:

I Thursday, March 15
I 2:30 to 4:20
I Gowen 301

If you need to take the final at a different date:

I If you’ve already sent me an email, no action needed
I Otherwise, send me an email by the end of today

Review sessions:

I Monday, Mar 12: EEB 125, 4:30 to 6:30
I Tuesday, Mar 13: EEB 105, 4:30 to 6:30

3

Final

Final logistics:

I Thursday, March 15
I 2:30 to 4:20
I Gowen 301

If you need to take the final at a different date:

I If you’ve already sent me an email, no action needed
I Otherwise, send me an email by the end of today

Review sessions:

I Monday, Mar 12: EEB 125, 4:30 to 6:30
I Tuesday, Mar 13: EEB 105, 4:30 to 6:30

3

Final

Final logistics:

I Thursday, March 15
I 2:30 to 4:20
I Gowen 301

If you need to take the final at a different date:

I If you’ve already sent me an email, no action needed
I Otherwise, send me an email by the end of today

Review sessions:

I Monday, Mar 12: EEB 125, 4:30 to 6:30
I Tuesday, Mar 13: EEB 105, 4:30 to 6:30

3

Final

The final will be cumulative, but skewed towards new material.

Post-midterm topics:

1. Heaps

2. Sorting, basic divide-and-conquer
3. The tree method and the master method
4. Graphs

I Definitions
I Representation
I Traversal
I Dijkstra’s
I Topological sort
I MSTs (Prim, Kruskal, disjoint sets)

5. P and NP

4

Final

The final will be cumulative, but skewed towards new material.

Post-midterm topics:

1. Heaps
2. Sorting, basic divide-and-conquer

3. The tree method and the master method
4. Graphs

I Definitions
I Representation
I Traversal
I Dijkstra’s
I Topological sort
I MSTs (Prim, Kruskal, disjoint sets)

5. P and NP

4

Final

The final will be cumulative, but skewed towards new material.

Post-midterm topics:

1. Heaps
2. Sorting, basic divide-and-conquer
3. The tree method and the master method

4. Graphs
I Definitions
I Representation
I Traversal
I Dijkstra’s
I Topological sort
I MSTs (Prim, Kruskal, disjoint sets)

5. P and NP

4

Final

The final will be cumulative, but skewed towards new material.

Post-midterm topics:

1. Heaps
2. Sorting, basic divide-and-conquer
3. The tree method and the master method
4. Graphs

I Definitions
I Representation
I Traversal
I Dijkstra’s
I Topological sort
I MSTs (Prim, Kruskal, disjoint sets)

5. P and NP

4

Final

The final will be cumulative, but skewed towards new material.

Post-midterm topics:

1. Heaps
2. Sorting, basic divide-and-conquer
3. The tree method and the master method
4. Graphs

I Definitions
I Representation
I Traversal
I Dijkstra’s
I Topological sort
I MSTs (Prim, Kruskal, disjoint sets)

5. P and NP

4

Final

The final will be cumulative, but skewed towards new material.

Post-midterm topics:

1. Heaps
2. Sorting, basic divide-and-conquer
3. The tree method and the master method
4. Graphs

I Definitions
I Representation
I Traversal
I Dijkstra’s
I Topological sort
I MSTs (Prim, Kruskal, disjoint sets)

5. P and NP

4

Final

The final will be cumulative, but skewed towards new material.

Pre-midterm topics:

1. Asymptotic analysis, modeling code as equations
2. Anything related to dictionaries
3. Caching and locality

5

Final

The final will be cumulative, but skewed towards new material.

Pre-midterm topics:

1. Asymptotic analysis, modeling code as equations

2. Anything related to dictionaries
3. Caching and locality

5

Final

The final will be cumulative, but skewed towards new material.

Pre-midterm topics:

1. Asymptotic analysis, modeling code as equations
2. Anything related to dictionaries

3. Caching and locality

5

Final

The final will be cumulative, but skewed towards new material.

Pre-midterm topics:

1. Asymptotic analysis, modeling code as equations
2. Anything related to dictionaries
3. Caching and locality

5

Final

General study tips for mechanical problems:

1. Drill until you can complete them very quickly
2. Invent your own problems and check them using online tools

General study tips for non-mechanical problems:

1. Do tons of practice
2. Minor differences matter; make sure you ask about them
3. Definitions are important; make sure you know them
4. For each data structure and algorithm we’ve studied, try

writing a document summarizing (a) the high-level idea of
how to implement them and (b) the best, average, and
worst-case runtimes.

5. Think about what would happen if you were to tweak some
aspect of a data structure or algorithm

6

Final

General study tips for mechanical problems:

1. Drill until you can complete them very quickly

2. Invent your own problems and check them using online tools

General study tips for non-mechanical problems:

1. Do tons of practice
2. Minor differences matter; make sure you ask about them
3. Definitions are important; make sure you know them
4. For each data structure and algorithm we’ve studied, try

writing a document summarizing (a) the high-level idea of
how to implement them and (b) the best, average, and
worst-case runtimes.

5. Think about what would happen if you were to tweak some
aspect of a data structure or algorithm

6

Final

General study tips for mechanical problems:

1. Drill until you can complete them very quickly
2. Invent your own problems and check them using online tools

General study tips for non-mechanical problems:

1. Do tons of practice
2. Minor differences matter; make sure you ask about them
3. Definitions are important; make sure you know them
4. For each data structure and algorithm we’ve studied, try

writing a document summarizing (a) the high-level idea of
how to implement them and (b) the best, average, and
worst-case runtimes.

5. Think about what would happen if you were to tweak some
aspect of a data structure or algorithm

6

Final

General study tips for mechanical problems:

1. Drill until you can complete them very quickly
2. Invent your own problems and check them using online tools

General study tips for non-mechanical problems:

1. Do tons of practice
2. Minor differences matter; make sure you ask about them
3. Definitions are important; make sure you know them
4. For each data structure and algorithm we’ve studied, try

writing a document summarizing (a) the high-level idea of
how to implement them and (b) the best, average, and
worst-case runtimes.

5. Think about what would happen if you were to tweak some
aspect of a data structure or algorithm

6

Final

General study tips for mechanical problems:

1. Drill until you can complete them very quickly
2. Invent your own problems and check them using online tools

General study tips for non-mechanical problems:

1. Do tons of practice

2. Minor differences matter; make sure you ask about them
3. Definitions are important; make sure you know them
4. For each data structure and algorithm we’ve studied, try

writing a document summarizing (a) the high-level idea of
how to implement them and (b) the best, average, and
worst-case runtimes.

5. Think about what would happen if you were to tweak some
aspect of a data structure or algorithm

6

Final

General study tips for mechanical problems:

1. Drill until you can complete them very quickly
2. Invent your own problems and check them using online tools

General study tips for non-mechanical problems:

1. Do tons of practice
2. Minor differences matter; make sure you ask about them

3. Definitions are important; make sure you know them
4. For each data structure and algorithm we’ve studied, try

writing a document summarizing (a) the high-level idea of
how to implement them and (b) the best, average, and
worst-case runtimes.

5. Think about what would happen if you were to tweak some
aspect of a data structure or algorithm

6

Final

General study tips for mechanical problems:

1. Drill until you can complete them very quickly
2. Invent your own problems and check them using online tools

General study tips for non-mechanical problems:

1. Do tons of practice
2. Minor differences matter; make sure you ask about them
3. Definitions are important; make sure you know them

4. For each data structure and algorithm we’ve studied, try
writing a document summarizing (a) the high-level idea of
how to implement them and (b) the best, average, and
worst-case runtimes.

5. Think about what would happen if you were to tweak some
aspect of a data structure or algorithm

6

Final

General study tips for mechanical problems:

1. Drill until you can complete them very quickly
2. Invent your own problems and check them using online tools

General study tips for non-mechanical problems:

1. Do tons of practice
2. Minor differences matter; make sure you ask about them
3. Definitions are important; make sure you know them
4. For each data structure and algorithm we’ve studied, try

writing a document summarizing (a) the high-level idea of
how to implement them and (b) the best, average, and
worst-case runtimes.

5. Think about what would happen if you were to tweak some
aspect of a data structure or algorithm

6

Final

General study tips for mechanical problems:

1. Drill until you can complete them very quickly
2. Invent your own problems and check them using online tools

General study tips for non-mechanical problems:

1. Do tons of practice
2. Minor differences matter; make sure you ask about them
3. Definitions are important; make sure you know them
4. For each data structure and algorithm we’ve studied, try

writing a document summarizing (a) the high-level idea of
how to implement them and (b) the best, average, and
worst-case runtimes.

5. Think about what would happen if you were to tweak some
aspect of a data structure or algorithm 6

Final

General tips when asked to analyze algorithms or code:

1. Don’t make assumptions about what the code is doing,
actually read it

2. Try mentally running the code on specific examples

General tips when asked to write pseudocode:

1. Keep a mental list of every data structure and algo we’ve
studied. When stuck, go through that list one-by-one and try
and find one that seems applicable

2. Try writing an algorithm that works on a specific example
first, then figure out how to generalize.

7

Final

General tips when asked to analyze algorithms or code:

1. Don’t make assumptions about what the code is doing,
actually read it

2. Try mentally running the code on specific examples

General tips when asked to write pseudocode:

1. Keep a mental list of every data structure and algo we’ve
studied. When stuck, go through that list one-by-one and try
and find one that seems applicable

2. Try writing an algorithm that works on a specific example
first, then figure out how to generalize.

7

Final

General tips when asked to analyze algorithms or code:

1. Don’t make assumptions about what the code is doing,
actually read it

2. Try mentally running the code on specific examples

General tips when asked to write pseudocode:

1. Keep a mental list of every data structure and algo we’ve
studied. When stuck, go through that list one-by-one and try
and find one that seems applicable

2. Try writing an algorithm that works on a specific example
first, then figure out how to generalize.

7

Final

General tips when asked to analyze algorithms or code:

1. Don’t make assumptions about what the code is doing,
actually read it

2. Try mentally running the code on specific examples

General tips when asked to write pseudocode:

1. Keep a mental list of every data structure and algo we’ve
studied. When stuck, go through that list one-by-one and try
and find one that seems applicable

2. Try writing an algorithm that works on a specific example
first, then figure out how to generalize.

7

Final

General tips when asked to analyze algorithms or code:

1. Don’t make assumptions about what the code is doing,
actually read it

2. Try mentally running the code on specific examples

General tips when asked to write pseudocode:

1. Keep a mental list of every data structure and algo we’ve
studied. When stuck, go through that list one-by-one and try
and find one that seems applicable

2. Try writing an algorithm that works on a specific example
first, then figure out how to generalize.

7

Final

General tips when asked to analyze algorithms or code:

1. Don’t make assumptions about what the code is doing,
actually read it

2. Try mentally running the code on specific examples

General tips when asked to write pseudocode:

1. Keep a mental list of every data structure and algo we’ve
studied. When stuck, go through that list one-by-one and try
and find one that seems applicable

2. Try writing an algorithm that works on a specific example
first, then figure out how to generalize.

7

Final

Syllabus change:

Previously:

I Midterm was 20% of grade
I Final was 20% of grade

Now:

I Your lowest-scoring exam will be 15% of grade
I Your highest-scoring exam will be 25% of grade

8

Final

Syllabus change:

Previously:

I Midterm was 20% of grade
I Final was 20% of grade

Now:

I Your lowest-scoring exam will be 15% of grade
I Your highest-scoring exam will be 25% of grade

8

Final

Syllabus change:

Previously:

I Midterm was 20% of grade
I Final was 20% of grade

Now:

I Your lowest-scoring exam will be 15% of grade
I Your highest-scoring exam will be 25% of grade

8

Recap

Last time:

I Introduced the idea of decision problems and complexity
classes

I Introduced the complexity classes P and EXP
I Found some (useful!) problems are, unfortunately, in EXP
I But many of those problems are also in NP!
I Question: if there are problems where we can verify answers

efficiently, does that mean we can also find answers
efficiently?

9

Recap

Last time:

I Introduced the idea of decision problems and complexity
classes

I Introduced the complexity classes P and EXP
I Found some (useful!) problems are, unfortunately, in EXP
I But many of those problems are also in NP!
I Question: if there are problems where we can verify answers

efficiently, does that mean we can also find answers
efficiently?

9

Recap

Last time:

I Introduced the idea of decision problems and complexity
classes

I Introduced the complexity classes P and EXP

I Found some (useful!) problems are, unfortunately, in EXP
I But many of those problems are also in NP!
I Question: if there are problems where we can verify answers

efficiently, does that mean we can also find answers
efficiently?

9

Recap

Last time:

I Introduced the idea of decision problems and complexity
classes

I Introduced the complexity classes P and EXP
I Found some (useful!) problems are, unfortunately, in EXP

I But many of those problems are also in NP!
I Question: if there are problems where we can verify answers

efficiently, does that mean we can also find answers
efficiently?

9

Recap

Last time:

I Introduced the idea of decision problems and complexity
classes

I Introduced the complexity classes P and EXP
I Found some (useful!) problems are, unfortunately, in EXP
I But many of those problems are also in NP!

I Question: if there are problems where we can verify answers
efficiently, does that mean we can also find answers
efficiently?

9

Recap

Last time:

I Introduced the idea of decision problems and complexity
classes

I Introduced the complexity classes P and EXP
I Found some (useful!) problems are, unfortunately, in EXP
I But many of those problems are also in NP!
I Question: if there are problems where we can verify answers

efficiently, does that mean we can also find answers
efficiently?

9

Is CIRCUIT-SAT in NP?

Question: is CIRCUIT-SAT in NP?

CIRCUIT-SAT

Given a boolean expression such as “a && (b || c)” and the
truth values for some of the variables, is there a way to set the
remaining variables so that the output is T?

Step 1: Assume you have a magical solver, and it said “yes” for
some boolean expression B.

Step 2: Three questions to answer.

1. How do we modify the solver so it returns a convincing
certificate for B?

2. How do we check the certificate, whatever it is?
3. Does our verifier actually run in polynomial time?

10

Is CIRCUIT-SAT in NP?

Question: is CIRCUIT-SAT in NP?
CIRCUIT-SAT

Given a boolean expression such as “a && (b || c)” and the
truth values for some of the variables, is there a way to set the
remaining variables so that the output is T?

Step 1: Assume you have a magical solver, and it said “yes” for
some boolean expression B.

Step 2: Three questions to answer.

1. How do we modify the solver so it returns a convincing
certificate for B?

2. How do we check the certificate, whatever it is?
3. Does our verifier actually run in polynomial time?

10

Is CIRCUIT-SAT in NP?

Question: is CIRCUIT-SAT in NP?
CIRCUIT-SAT

Given a boolean expression such as “a && (b || c)” and the
truth values for some of the variables, is there a way to set the
remaining variables so that the output is T?

Step 1: Assume you have a magical solver, and it said “yes” for
some boolean expression B.

Step 2: Three questions to answer.

1. How do we modify the solver so it returns a convincing
certificate for B?

2. How do we check the certificate, whatever it is?
3. Does our verifier actually run in polynomial time?

10

Is CIRCUIT-SAT in NP?

Question: is CIRCUIT-SAT in NP?
CIRCUIT-SAT

Given a boolean expression such as “a && (b || c)” and the
truth values for some of the variables, is there a way to set the
remaining variables so that the output is T?

Step 1: Assume you have a magical solver, and it said “yes” for
some boolean expression B.

Step 2: Three questions to answer.

1. How do we modify the solver so it returns a convincing
certificate for B?

2. How do we check the certificate, whatever it is?
3. Does our verifier actually run in polynomial time?

10

Is CIRCUIT-SAT in NP?

Step 2a: How do we modify the solver so it returns a convincing
certificate?

Idea: return a map of the variable assignments!
{a=true, b=false, c=true, d=false, ...}

2b: How do we check the certificate, whatever it is?

Idea: try evaluating the expression!
boolean verifyCiruitSat(BooleanAst B, Dictionary<String, Boolean> certificate) {

return evaluateExpr(B, certificate);

}

private boolean evaluateExpr(B, certificate) {

// Do something similar to toDoubleHelper, back from project 1

}

2c: Does our verifier actually run in polynomial time?

Yes: we visit each node and edge in the tree a constant number of
times.

11

Is CIRCUIT-SAT in NP?

Step 2a: How do we modify the solver so it returns a convincing
certificate?

Idea: return a map of the variable assignments!
{a=true, b=false, c=true, d=false, ...}

2b: How do we check the certificate, whatever it is?

Idea: try evaluating the expression!
boolean verifyCiruitSat(BooleanAst B, Dictionary<String, Boolean> certificate) {

return evaluateExpr(B, certificate);

}

private boolean evaluateExpr(B, certificate) {

// Do something similar to toDoubleHelper, back from project 1

}

2c: Does our verifier actually run in polynomial time?

Yes: we visit each node and edge in the tree a constant number of
times.

11

Is CIRCUIT-SAT in NP?

Step 2a: How do we modify the solver so it returns a convincing
certificate?

Idea: return a map of the variable assignments!
{a=true, b=false, c=true, d=false, ...}

2b: How do we check the certificate, whatever it is?

Idea: try evaluating the expression!
boolean verifyCiruitSat(BooleanAst B, Dictionary<String, Boolean> certificate) {

return evaluateExpr(B, certificate);

}

private boolean evaluateExpr(B, certificate) {

// Do something similar to toDoubleHelper, back from project 1

}

2c: Does our verifier actually run in polynomial time?

Yes: we visit each node and edge in the tree a constant number of
times.

11

Is CIRCUIT-SAT in NP?

Step 2a: How do we modify the solver so it returns a convincing
certificate?

Idea: return a map of the variable assignments!
{a=true, b=false, c=true, d=false, ...}

2b: How do we check the certificate, whatever it is?

Idea: try evaluating the expression!
boolean verifyCiruitSat(BooleanAst B, Dictionary<String, Boolean> certificate) {

return evaluateExpr(B, certificate);

}

private boolean evaluateExpr(B, certificate) {

// Do something similar to toDoubleHelper, back from project 1

}

2c: Does our verifier actually run in polynomial time?

Yes: we visit each node and edge in the tree a constant number of
times.

11

Is CIRCUIT-SAT in NP?

Step 2a: How do we modify the solver so it returns a convincing
certificate?

Idea: return a map of the variable assignments!
{a=true, b=false, c=true, d=false, ...}

2b: How do we check the certificate, whatever it is?

Idea: try evaluating the expression!
boolean verifyCiruitSat(BooleanAst B, Dictionary<String, Boolean> certificate) {

return evaluateExpr(B, certificate);

}

private boolean evaluateExpr(B, certificate) {

// Do something similar to toDoubleHelper, back from project 1

}

2c: Does our verifier actually run in polynomial time?

Yes: we visit each node and edge in the tree a constant number of
times.

11

Is CIRCUIT-SAT in NP?

Step 2a: How do we modify the solver so it returns a convincing
certificate?

Idea: return a map of the variable assignments!
{a=true, b=false, c=true, d=false, ...}

2b: How do we check the certificate, whatever it is?

Idea: try evaluating the expression!
boolean verifyCiruitSat(BooleanAst B, Dictionary<String, Boolean> certificate) {

return evaluateExpr(B, certificate);

}

private boolean evaluateExpr(B, certificate) {

// Do something similar to toDoubleHelper, back from project 1

}

2c: Does our verifier actually run in polynomial time?

Yes: we visit each node and edge in the tree a constant number of
times. 11

Ranking problems

So far, we’ve talked about classifying problems into classes.

Is there some way of “ranking” problems by difficulty?

For example, is...

I 2-COLOR easier or harder then 3-COLOR?
I 3-COLOR easier or harder then CIRCUIT-SAT?

12

Ranking problems

So far, we’ve talked about classifying problems into classes.

Is there some way of “ranking” problems by difficulty?

For example, is...

I 2-COLOR easier or harder then 3-COLOR?
I 3-COLOR easier or harder then CIRCUIT-SAT?

12

Ranking problems

So far, we’ve talked about classifying problems into classes.

Is there some way of “ranking” problems by difficulty?

For example, is...

I 2-COLOR easier or harder then 3-COLOR?

I 3-COLOR easier or harder then CIRCUIT-SAT?

12

Ranking problems

So far, we’ve talked about classifying problems into classes.

Is there some way of “ranking” problems by difficulty?

For example, is...

I 2-COLOR easier or harder then 3-COLOR?
I 3-COLOR easier or harder then CIRCUIT-SAT?

12

Ranking problems

Yes, using reductions.

Reductions
Given two decision problems A and B, we can show that A is
“harder then or the same difficulty as” B by...

1. Assuming we have some magical solver for A
2. Create an algorithm which calls the magical solver to solve B

Core ideas: If solving A lets us also solve B, then...

I A was “harder then” (or the same as) B
I The B was really a special case of A all along!
I We’ve reduced the number of distinct problems in the world

by one.

13

Ranking problems

Yes, using reductions.
Reductions
Given two decision problems A and B, we can show that A is
“harder then or the same difficulty as” B by...

1. Assuming we have some magical solver for A
2. Create an algorithm which calls the magical solver to solve B

Core ideas: If solving A lets us also solve B, then...

I A was “harder then” (or the same as) B
I The B was really a special case of A all along!
I We’ve reduced the number of distinct problems in the world

by one.

13

Ranking problems

Yes, using reductions.
Reductions
Given two decision problems A and B, we can show that A is
“harder then or the same difficulty as” B by...

1. Assuming we have some magical solver for A

2. Create an algorithm which calls the magical solver to solve B

Core ideas: If solving A lets us also solve B, then...

I A was “harder then” (or the same as) B
I The B was really a special case of A all along!
I We’ve reduced the number of distinct problems in the world

by one.

13

Ranking problems

Yes, using reductions.
Reductions
Given two decision problems A and B, we can show that A is
“harder then or the same difficulty as” B by...

1. Assuming we have some magical solver for A
2. Create an algorithm which calls the magical solver to solve B

Core ideas: If solving A lets us also solve B, then...

I A was “harder then” (or the same as) B
I The B was really a special case of A all along!
I We’ve reduced the number of distinct problems in the world

by one.

13

Ranking problems

Yes, using reductions.
Reductions
Given two decision problems A and B, we can show that A is
“harder then or the same difficulty as” B by...

1. Assuming we have some magical solver for A
2. Create an algorithm which calls the magical solver to solve B

Core ideas: If solving A lets us also solve B, then...

I A was “harder then” (or the same as) B

I The B was really a special case of A all along!
I We’ve reduced the number of distinct problems in the world

by one.

13

Ranking problems

Yes, using reductions.
Reductions
Given two decision problems A and B, we can show that A is
“harder then or the same difficulty as” B by...

1. Assuming we have some magical solver for A
2. Create an algorithm which calls the magical solver to solve B

Core ideas: If solving A lets us also solve B, then...

I A was “harder then” (or the same as) B
I The B was really a special case of A all along!

I We’ve reduced the number of distinct problems in the world
by one.

13

Ranking problems

Yes, using reductions.
Reductions
Given two decision problems A and B, we can show that A is
“harder then or the same difficulty as” B by...

1. Assuming we have some magical solver for A
2. Create an algorithm which calls the magical solver to solve B

Core ideas: If solving A lets us also solve B, then...

I A was “harder then” (or the same as) B
I The B was really a special case of A all along!
I We’ve reduced the number of distinct problems in the world

by one.
13

Showing 2-COLOR reduces to 3-COLOR

We want to show that 2-COLOR reduces to 3-COLOR: that
3-COLOR is “harder then” 2-COLOR.

Step 1: Assume we have a magical solver for 2-COLOR

Step 2: Using this magical solver, how do we solve an instance of
2-COLOR?

Answer:

1. Start by adding a new vertex to the graph
2. Connect this vertex to all other nodes
3. Give this vertex some color. This forces all other vertices to

have a only one of two colors!
4. Run the solver for 3-COLOR, return the result

14

Showing 2-COLOR reduces to 3-COLOR

We want to show that 2-COLOR reduces to 3-COLOR: that
3-COLOR is “harder then” 2-COLOR.

Step 1: Assume we have a magical solver for 2-COLOR

Step 2: Using this magical solver, how do we solve an instance of
2-COLOR?

Answer:

1. Start by adding a new vertex to the graph
2. Connect this vertex to all other nodes
3. Give this vertex some color. This forces all other vertices to

have a only one of two colors!
4. Run the solver for 3-COLOR, return the result

14

Showing 2-COLOR reduces to 3-COLOR

We want to show that 2-COLOR reduces to 3-COLOR: that
3-COLOR is “harder then” 2-COLOR.

Step 1: Assume we have a magical solver for 2-COLOR

Step 2: Using this magical solver, how do we solve an instance of
2-COLOR?

Answer:

1. Start by adding a new vertex to the graph
2. Connect this vertex to all other nodes
3. Give this vertex some color. This forces all other vertices to

have a only one of two colors!
4. Run the solver for 3-COLOR, return the result

14

Showing 2-COLOR reduces to 3-COLOR

We want to show that 2-COLOR reduces to 3-COLOR: that
3-COLOR is “harder then” 2-COLOR.

Step 1: Assume we have a magical solver for 2-COLOR

Step 2: Using this magical solver, how do we solve an instance of
2-COLOR?

Answer:

1. Start by adding a new vertex to the graph
2. Connect this vertex to all other nodes
3. Give this vertex some color. This forces all other vertices to

have a only one of two colors!
4. Run the solver for 3-COLOR, return the result

14

Showing problems are the same

New question: How do we show two problems are the same?

Intuition:

I To show two numbers a and b are the same, we can show
a ≥ b and a ≤ b.

I To show two functions f (n) and g(n) are asymptotically the
same, we can show that f (n) both dominates and is
dominated by g(n)

I To show two decision problems A and B are the same, we can
show that A reduces to B and B reduces A!

15

Showing problems are the same

New question: How do we show two problems are the same?

Intuition:

I To show two numbers a and b are the same, we can show
a ≥ b and a ≤ b.

I To show two functions f (n) and g(n) are asymptotically the
same, we can show that f (n) both dominates and is
dominated by g(n)

I To show two decision problems A and B are the same, we can
show that A reduces to B and B reduces A!

15

Showing problems are the same

New question: How do we show two problems are the same?

Intuition:

I To show two numbers a and b are the same, we can show
a ≥ b and a ≤ b.

I To show two functions f (n) and g(n) are asymptotically the
same, we can show that f (n) both dominates and is
dominated by g(n)

I To show two decision problems A and B are the same, we can
show that A reduces to B and B reduces A!

15

Showing problems are the same

New question: How do we show two problems are the same?

Intuition:

I To show two numbers a and b are the same, we can show
a ≥ b and a ≤ b.

I To show two functions f (n) and g(n) are asymptotically the
same, we can show that f (n) both dominates and is
dominated by g(n)

I To show two decision problems A and B are the same, we can
show that A reduces to B and B reduces A!

15

LONG-PATH and HAM-PATH

LONG-PATH

Given a graph G and some integer k, does G contain some path
that uses k edges?

HAM-PATH

Given a graph G, does G have a path that visits every vertex?

Goal: Show that LONG-PATH and HAM-PATH are the same

Step 1:
Reduce HAM-PATH to LONG-PATH

boolean hamPathSolver(G) {

return longPathSolver(G, |V| - 1)

}

Step 2:
Reduce LONG-PATH to HAM-PATH

boolean longPathSolver(G, k) {

for (G2=(v1, v2, ..., vk) : G):

if (hamPathSolver(G2)):

return true;

return false;

}

16

LONG-PATH and HAM-PATH

LONG-PATH

Given a graph G and some integer k, does G contain some path
that uses k edges?

HAM-PATH

Given a graph G, does G have a path that visits every vertex?

Goal: Show that LONG-PATH and HAM-PATH are the same

Step 1:
Reduce HAM-PATH to LONG-PATH

boolean hamPathSolver(G) {

return longPathSolver(G, |V| - 1)

}

Step 2:
Reduce LONG-PATH to HAM-PATH

boolean longPathSolver(G, k) {

for (G2=(v1, v2, ..., vk) : G):

if (hamPathSolver(G2)):

return true;

return false;

}

16

LONG-PATH and HAM-PATH

LONG-PATH

Given a graph G and some integer k, does G contain some path
that uses k edges?

HAM-PATH

Given a graph G, does G have a path that visits every vertex?

Goal: Show that LONG-PATH and HAM-PATH are the same

Step 1:
Reduce HAM-PATH to LONG-PATH

boolean hamPathSolver(G) {

return longPathSolver(G, |V| - 1)

}

Step 2:
Reduce LONG-PATH to HAM-PATH

boolean longPathSolver(G, k) {

for (G2=(v1, v2, ..., vk) : G):

if (hamPathSolver(G2)):

return true;

return false;

}

16

LONG-PATH and HAM-PATH

LONG-PATH

Given a graph G and some integer k, does G contain some path
that uses k edges?

HAM-PATH

Given a graph G, does G have a path that visits every vertex?

Goal: Show that LONG-PATH and HAM-PATH are the same

Step 1:
Reduce HAM-PATH to LONG-PATH

boolean hamPathSolver(G) {

return longPathSolver(G, |V| - 1)

}

Step 2:
Reduce LONG-PATH to HAM-PATH

boolean longPathSolver(G, k) {

for (G2=(v1, v2, ..., vk) : G):

if (hamPathSolver(G2)):

return true;

return false;

}

16

LONG-PATH and HAM-PATH

LONG-PATH

Given a graph G and some integer k, does G contain some path
that uses k edges?

HAM-PATH

Given a graph G, does G have a path that visits every vertex?

Goal: Show that LONG-PATH and HAM-PATH are the same

Step 1:
Reduce HAM-PATH to LONG-PATH

boolean hamPathSolver(G) {

return longPathSolver(G, |V| - 1)

}

Step 2:
Reduce LONG-PATH to HAM-PATH

boolean longPathSolver(G, k) {

for (G2=(v1, v2, ..., vk) : G):

if (hamPathSolver(G2)):

return true;

return false;

}

16

LONG-PATH and HAM-PATH

LONG-PATH

Given a graph G and some integer k, does G contain some path
that uses k edges?

HAM-PATH

Given a graph G, does G have a path that visits every vertex?

Goal: Show that LONG-PATH and HAM-PATH are the same

Step 1:
Reduce HAM-PATH to LONG-PATH

boolean hamPathSolver(G) {

return longPathSolver(G, |V| - 1)

}

Step 2:
Reduce LONG-PATH to HAM-PATH

boolean longPathSolver(G, k) {

for (G2=(v1, v2, ..., vk) : G):

if (hamPathSolver(G2)):

return true;

return false;

}

16

LONG-PATH and HAM-PATH

LONG-PATH

Given a graph G and some integer k, does G contain some path
that uses k edges?

HAM-PATH

Given a graph G, does G have a path that visits every vertex?

Goal: Show that LONG-PATH and HAM-PATH are the same

Step 1:
Reduce HAM-PATH to LONG-PATH

boolean hamPathSolver(G) {

return longPathSolver(G, |V| - 1)

}

Step 2:
Reduce LONG-PATH to HAM-PATH

boolean longPathSolver(G, k) {

for (G2=(v1, v2, ..., vk) : G):

if (hamPathSolver(G2)):

return true;

return false;

}

16

Equivalent problems

Punchline: HAM-PATH and LONG-PATH are actually the same
problem in disguise!

Question: Are there other problems that are secretly the same
problem in disguise?

Yes! It turns out that...

I CIRCUIT-SAT

I 3-COLOR

I HAM-PATH

I LONG-PATH

...are all the same problem.

17

Equivalent problems

Punchline: HAM-PATH and LONG-PATH are actually the same
problem in disguise!

Question: Are there other problems that are secretly the same
problem in disguise?

Yes! It turns out that...

I CIRCUIT-SAT

I 3-COLOR

I HAM-PATH

I LONG-PATH

...are all the same problem.

17

Equivalent problems

Punchline: HAM-PATH and LONG-PATH are actually the same
problem in disguise!

Question: Are there other problems that are secretly the same
problem in disguise?

Yes! It turns out that...

I CIRCUIT-SAT

I 3-COLOR

I HAM-PATH

I LONG-PATH

...are all the same problem.

17

NP-HARD and NP-COMPLETE

Is there some problem that’s “harder then or same as” all of the
problems we’ve seen so far?

Yes! For example, CIRCUIT-SAT (and therefore HAM-PATH and
LONG-PATH and 3-COLOR).
NP-HARD
A decision problem is NP-HARD if that decision problem is
“harder then or as hard as” any other problem in NP.

Alternative phrasing: if every single decision problem in NP
reduces to X , then X is NP-HARD.

NP-COMPLETE
A decision problem is NP-COMPLETE if it is both in NP and in
NP-HARD.

18

NP-HARD and NP-COMPLETE

Is there some problem that’s “harder then or same as” all of the
problems we’ve seen so far?

Yes! For example, CIRCUIT-SAT (and therefore HAM-PATH and
LONG-PATH and 3-COLOR).

NP-HARD
A decision problem is NP-HARD if that decision problem is
“harder then or as hard as” any other problem in NP.

Alternative phrasing: if every single decision problem in NP
reduces to X , then X is NP-HARD.

NP-COMPLETE
A decision problem is NP-COMPLETE if it is both in NP and in
NP-HARD.

18

NP-HARD and NP-COMPLETE

Is there some problem that’s “harder then or same as” all of the
problems we’ve seen so far?

Yes! For example, CIRCUIT-SAT (and therefore HAM-PATH and
LONG-PATH and 3-COLOR).
NP-HARD
A decision problem is NP-HARD if that decision problem is
“harder then or as hard as” any other problem in NP.

Alternative phrasing: if every single decision problem in NP
reduces to X , then X is NP-HARD.

NP-COMPLETE
A decision problem is NP-COMPLETE if it is both in NP and in
NP-HARD.

18

NP-HARD and NP-COMPLETE

Is there some problem that’s “harder then or same as” all of the
problems we’ve seen so far?

Yes! For example, CIRCUIT-SAT (and therefore HAM-PATH and
LONG-PATH and 3-COLOR).
NP-HARD
A decision problem is NP-HARD if that decision problem is
“harder then or as hard as” any other problem in NP.

Alternative phrasing: if every single decision problem in NP
reduces to X , then X is NP-HARD.

NP-COMPLETE
A decision problem is NP-COMPLETE if it is both in NP and in
NP-HARD.

18

NP-HARD and NP-COMPLETE

Is there some problem that’s “harder then or same as” all of the
problems we’ve seen so far?

Yes! For example, CIRCUIT-SAT (and therefore HAM-PATH and
LONG-PATH and 3-COLOR).
NP-HARD
A decision problem is NP-HARD if that decision problem is
“harder then or as hard as” any other problem in NP.

Alternative phrasing: if every single decision problem in NP
reduces to X , then X is NP-HARD.

NP-COMPLETE
A decision problem is NP-COMPLETE if it is both in NP and in
NP-HARD.

18

NP-HARD and NP-COMPLETE

Punchline: If we have a way of solving any NP-HARD problem,
we have a way of solving every problem we’ve looked at so far.

19

NP-HARD and NP-COMPLETE

How do these relate?

How do all relate to P?

20

NP-HARD and NP-COMPLETE

How do these relate?

How do all relate to P?

20

Is P a subset of EXP?

Last time, we asked if P is a subset of EXP.

Answer 1: The sets are disjoint
E.g. if a problem is in P, it’s not in EXP. P EXP

Answer 2: The sets overlap
E.g. some, but not all problems in P
are in EXP

P EXP

Answer 3: P is a subset of EXP
All problems in P are also in EXP P EXP

21

Is P a subset of EXP?

Last time, we asked if P is a subset of EXP.

Answer 1: The sets are disjoint
E.g. if a problem is in P, it’s not in EXP. P EXP

Answer 2: The sets overlap
E.g. some, but not all problems in P
are in EXP

P EXP

Answer 3: P is a subset of EXP
All problems in P are also in EXP P EXP

21

Is P a subset of EXP?

Last time, we asked if P is a subset of EXP.

Answer 1: The sets are disjoint
E.g. if a problem is in P, it’s not in EXP. P EXP

Answer 2: The sets overlap
E.g. some, but not all problems in P
are in EXP

P EXP

Answer 3: P is a subset of EXP
All problems in P are also in EXP P EXP

21

Is P a subset of EXP?

Last time, we asked if P is a subset of EXP.

Answer 1: The sets are disjoint
E.g. if a problem is in P, it’s not in EXP. P EXP

Answer 2: The sets overlap
E.g. some, but not all problems in P
are in EXP

P EXP

Answer 3: P is a subset of EXP
All problems in P are also in EXP P EXP

21

Is P a subset of EXP?

Last time, we asked if P is a subset of EXP.

It turns out, yes, P is indeed a subset of EXP:

Answer 3: P is a subset of EXP
All problems in P are also in EXP P EXP

Reason: EXP is the set of decision problems where there exists an
algorithm that solves the problem in worst-case exponential time.

So, if we can find a polynomial-time algorithm to a problem, we
can definitely find an exponential one!

22

Is P a subset of EXP?

Last time, we asked if P is a subset of EXP.

It turns out, yes, P is indeed a subset of EXP:

Answer 3: P is a subset of EXP
All problems in P are also in EXP P EXP

Reason: EXP is the set of decision problems where there exists an
algorithm that solves the problem in worst-case exponential time.

So, if we can find a polynomial-time algorithm to a problem, we
can definitely find an exponential one!

22

Is P a subset of EXP?

Last time, we asked if P is a subset of EXP.

It turns out, yes, P is indeed a subset of EXP:

Answer 3: P is a subset of EXP
All problems in P are also in EXP P EXP

Reason: EXP is the set of decision problems where there exists an
algorithm that solves the problem in worst-case exponential time.

So, if we can find a polynomial-time algorithm to a problem, we
can definitely find an exponential one!

22

Is P a subset of NP?

New question: is a P a subset of NP?

Answer 1: The sets are disjoint
E.g. if a problem is in P, it’s not in NP. P NP

Answer 2: The sets overlap
E.g. some, but not all problems in P
are in NP

P NP

Answer 3: P is a subset of NP
All problems in P are also in NP P NP

23

Is P a subset of NP?

New question: is a P a subset of NP?

Answer 1: The sets are disjoint
E.g. if a problem is in P, it’s not in NP. P NP

Answer 2: The sets overlap
E.g. some, but not all problems in P
are in NP

P NP

Answer 3: P is a subset of NP
All problems in P are also in NP P NP

23

Is P a subset of NP?

New question: is a P a subset of NP?

Answer 1: The sets are disjoint
E.g. if a problem is in P, it’s not in NP. P NP

Answer 2: The sets overlap
E.g. some, but not all problems in P
are in NP

P NP

Answer 3: P is a subset of NP
All problems in P are also in NP P NP

23

Is P a subset of NP?

New question: is a P a subset of NP?

Answer 1: The sets are disjoint
E.g. if a problem is in P, it’s not in NP. P NP

Answer 2: The sets overlap
E.g. some, but not all problems in P
are in NP

P NP

Answer 3: P is a subset of NP
All problems in P are also in NP P NP

23

Is P a subset of NP?

New question: is a P a subset of NP?

It turns out, yes.

Answer 3: P is a subset of NP
All problems in P are also in NP P NP

24

Is P a subset of NP?

Reason: Let’s say we have some decision problem X.

Step 1: Assume we have a magical solver for X, and it said “yes”
for some input.

Step 2: Three questions to answer.

1. How do make the solver so it returns a convincing certificate?
One possible certificate: return the string ” ”.

2. How do we check the certificate, whatever it is?
Idea: just ignore the certificate
boolean verifyX(input, certificate) {

return solverX(input);

}

3. Does our verifier actually run in polynomial time?
Yep. If X was originally in P, then we know by definition
solverX runs in polynomial time.

25

Is P a subset of NP?

Reason: Let’s say we have some decision problem X.

Step 1: Assume we have a magical solver for X, and it said “yes”
for some input.

Step 2: Three questions to answer.

1. How do make the solver so it returns a convincing certificate?
One possible certificate: return the string ” ”.

2. How do we check the certificate, whatever it is?
Idea: just ignore the certificate
boolean verifyX(input, certificate) {

return solverX(input);

}

3. Does our verifier actually run in polynomial time?
Yep. If X was originally in P, then we know by definition
solverX runs in polynomial time.

25

Is P a subset of NP?

Reason: Let’s say we have some decision problem X.

Step 1: Assume we have a magical solver for X, and it said “yes”
for some input.

Step 2: Three questions to answer.

1. How do make the solver so it returns a convincing certificate?

One possible certificate: return the string ” ”.
2. How do we check the certificate, whatever it is?

Idea: just ignore the certificate
boolean verifyX(input, certificate) {

return solverX(input);

}

3. Does our verifier actually run in polynomial time?
Yep. If X was originally in P, then we know by definition
solverX runs in polynomial time.

25

Is P a subset of NP?

Reason: Let’s say we have some decision problem X.

Step 1: Assume we have a magical solver for X, and it said “yes”
for some input.

Step 2: Three questions to answer.

1. How do make the solver so it returns a convincing certificate?
One possible certificate: return the string ” ”.

2. How do we check the certificate, whatever it is?
Idea: just ignore the certificate
boolean verifyX(input, certificate) {

return solverX(input);

}

3. Does our verifier actually run in polynomial time?
Yep. If X was originally in P, then we know by definition
solverX runs in polynomial time.

25

Is P a subset of NP?

Reason: Let’s say we have some decision problem X.

Step 1: Assume we have a magical solver for X, and it said “yes”
for some input.

Step 2: Three questions to answer.

1. How do make the solver so it returns a convincing certificate?
One possible certificate: return the string ” ”.

2. How do we check the certificate, whatever it is?

Idea: just ignore the certificate
boolean verifyX(input, certificate) {

return solverX(input);

}

3. Does our verifier actually run in polynomial time?
Yep. If X was originally in P, then we know by definition
solverX runs in polynomial time.

25

Is P a subset of NP?

Reason: Let’s say we have some decision problem X.

Step 1: Assume we have a magical solver for X, and it said “yes”
for some input.

Step 2: Three questions to answer.

1. How do make the solver so it returns a convincing certificate?
One possible certificate: return the string ” ”.

2. How do we check the certificate, whatever it is?
Idea: just ignore the certificate
boolean verifyX(input, certificate) {

return solverX(input);

}

3. Does our verifier actually run in polynomial time?
Yep. If X was originally in P, then we know by definition
solverX runs in polynomial time.

25

Is P a subset of NP?

Reason: Let’s say we have some decision problem X.

Step 1: Assume we have a magical solver for X, and it said “yes”
for some input.

Step 2: Three questions to answer.

1. How do make the solver so it returns a convincing certificate?
One possible certificate: return the string ” ”.

2. How do we check the certificate, whatever it is?
Idea: just ignore the certificate
boolean verifyX(input, certificate) {

return solverX(input);

}

3. Does our verifier actually run in polynomial time?
Yep. If X was originally in P, then we know by definition
solverX runs in polynomial time.

25

Is P a subset of NP?

Punchline: For any problem in P, we can build a verifier by just
re-using the solver!

26

Is P = NP?

Third question: is P = NP?

Answer 1: No
P is a subset of NP, but that’s it. P NP

Answer 2: Yes
Not only is a P a subset of NP, they’re
exactly the same

P NP

Answer: We don’t know.

27

Is P = NP?

Third question: is P = NP?

Answer 1: No
P is a subset of NP, but that’s it. P NP

Answer 2: Yes
Not only is a P a subset of NP, they’re
exactly the same

P NP

Answer: We don’t know.

27

Is P = NP?

Third question: is P = NP?

Answer 1: No
P is a subset of NP, but that’s it. P NP

Answer 2: Yes
Not only is a P a subset of NP, they’re
exactly the same

P NP

Answer: We don’t know.

27

Is P = NP?

Third question: is P = NP?

Answer 1: No
P is a subset of NP, but that’s it. P NP

Answer 2: Yes
Not only is a P a subset of NP, they’re
exactly the same

P NP

Answer: We don’t know.

27

What if P 6= NP?

What if P 6= NP?

Answer 1: No
P is a subset of NP, but that’s it. P NP

I Have your name be immortalized in CS textbooks forever
I Win 1 million dollars for solving a Millenium Prize problem
I The world otherwise looks the same

28

What if P 6= NP?

What if P 6= NP?

Answer 1: No
P is a subset of NP, but that’s it. P NP

I Have your name be immortalized in CS textbooks forever

I Win 1 million dollars for solving a Millenium Prize problem
I The world otherwise looks the same

28

What if P 6= NP?

What if P 6= NP?

Answer 1: No
P is a subset of NP, but that’s it. P NP

I Have your name be immortalized in CS textbooks forever
I Win 1 million dollars for solving a Millenium Prize problem

I The world otherwise looks the same

28

What if P 6= NP?

What if P 6= NP?

Answer 1: No
P is a subset of NP, but that’s it. P NP

I Have your name be immortalized in CS textbooks forever
I Win 1 million dollars for solving a Millenium Prize problem
I The world otherwise looks the same

28

What if P 6= NP?

If P 6= NP, and we have an NP problem, what do we do?

I Try and find approximate solutions

I Use probabilistic algorithms
I Use solvers that work efficiently on many (but not all!)

instances of NP-COMPLETE problems.
(E.g. programs like z3, which solve CIRCUIT-SAT)

I Find a way of reducing your problem into some famous
NP-HARD problem and use a solver

I Crowdsource. Observation: lots of games are actually NP
(e.g. sudoku).
Actual example: Foldit, a protein folding “game”

I Something something quantum computing? (Lots of caveats,
not practical right now, doesn’t solve everything, even if they
work.)

29

What if P 6= NP?

If P 6= NP, and we have an NP problem, what do we do?

I Try and find approximate solutions
I Use probabilistic algorithms

I Use solvers that work efficiently on many (but not all!)
instances of NP-COMPLETE problems.
(E.g. programs like z3, which solve CIRCUIT-SAT)

I Find a way of reducing your problem into some famous
NP-HARD problem and use a solver

I Crowdsource. Observation: lots of games are actually NP
(e.g. sudoku).
Actual example: Foldit, a protein folding “game”

I Something something quantum computing? (Lots of caveats,
not practical right now, doesn’t solve everything, even if they
work.)

29

What if P 6= NP?

If P 6= NP, and we have an NP problem, what do we do?

I Try and find approximate solutions
I Use probabilistic algorithms
I Use solvers that work efficiently on many (but not all!)

instances of NP-COMPLETE problems.
(E.g. programs like z3, which solve CIRCUIT-SAT)

I Find a way of reducing your problem into some famous
NP-HARD problem and use a solver

I Crowdsource. Observation: lots of games are actually NP
(e.g. sudoku).
Actual example: Foldit, a protein folding “game”

I Something something quantum computing? (Lots of caveats,
not practical right now, doesn’t solve everything, even if they
work.)

29

What if P 6= NP?

If P 6= NP, and we have an NP problem, what do we do?

I Try and find approximate solutions
I Use probabilistic algorithms
I Use solvers that work efficiently on many (but not all!)

instances of NP-COMPLETE problems.
(E.g. programs like z3, which solve CIRCUIT-SAT)

I Find a way of reducing your problem into some famous
NP-HARD problem and use a solver

I Crowdsource. Observation: lots of games are actually NP
(e.g. sudoku).
Actual example: Foldit, a protein folding “game”

I Something something quantum computing? (Lots of caveats,
not practical right now, doesn’t solve everything, even if they
work.)

29

What if P 6= NP?

If P 6= NP, and we have an NP problem, what do we do?

I Try and find approximate solutions
I Use probabilistic algorithms
I Use solvers that work efficiently on many (but not all!)

instances of NP-COMPLETE problems.
(E.g. programs like z3, which solve CIRCUIT-SAT)

I Find a way of reducing your problem into some famous
NP-HARD problem and use a solver

I Crowdsource. Observation: lots of games are actually NP
(e.g. sudoku).
Actual example: Foldit, a protein folding “game”

I Something something quantum computing? (Lots of caveats,
not practical right now, doesn’t solve everything, even if they
work.)

29

What if P 6= NP?

If P 6= NP, and we have an NP problem, what do we do?

I Try and find approximate solutions
I Use probabilistic algorithms
I Use solvers that work efficiently on many (but not all!)

instances of NP-COMPLETE problems.
(E.g. programs like z3, which solve CIRCUIT-SAT)

I Find a way of reducing your problem into some famous
NP-HARD problem and use a solver

I Crowdsource. Observation: lots of games are actually NP
(e.g. sudoku).
Actual example: Foldit, a protein folding “game”

I Something something quantum computing? (Lots of caveats,
not practical right now, doesn’t solve everything, even if they
work.) 29

What if P = NP?

What if P = NP?

What if this is reality? P NP

AND what if we have an efficient way of solving any
NP-COMPLETE problem?

30

What if P = NP?

What if P = NP?

What if this is reality? P NP

AND what if we have an efficient way of solving any
NP-COMPLETE problem?

30

What if P = NP?

I Have your name be immortalized in CS textbooks forever

I Win 1 million dollars for solving a Millenium Prize problem
I Finding a way of generating a proof of anything (assuming the

proof is a reasonable length)
I Win 5 million more dollars for solving the remaining

Millenium Prize problems
I Crack all of modern encryption, and have all the dollars
I Crack all of modern encryption, and have access to all

information, public or private
I Literally cure cancer

31

What if P = NP?

I Have your name be immortalized in CS textbooks forever
I Win 1 million dollars for solving a Millenium Prize problem

I Finding a way of generating a proof of anything (assuming the
proof is a reasonable length)

I Win 5 million more dollars for solving the remaining
Millenium Prize problems

I Crack all of modern encryption, and have all the dollars
I Crack all of modern encryption, and have access to all

information, public or private
I Literally cure cancer

31

What if P = NP?

I Have your name be immortalized in CS textbooks forever
I Win 1 million dollars for solving a Millenium Prize problem
I Finding a way of generating a proof of anything (assuming the

proof is a reasonable length)

I Win 5 million more dollars for solving the remaining
Millenium Prize problems

I Crack all of modern encryption, and have all the dollars
I Crack all of modern encryption, and have access to all

information, public or private
I Literally cure cancer

31

What if P = NP?

I Have your name be immortalized in CS textbooks forever
I Win 1 million dollars for solving a Millenium Prize problem
I Finding a way of generating a proof of anything (assuming the

proof is a reasonable length)
I Win 5 million more dollars for solving the remaining

Millenium Prize problems

I Crack all of modern encryption, and have all the dollars
I Crack all of modern encryption, and have access to all

information, public or private
I Literally cure cancer

31

What if P = NP?

I Have your name be immortalized in CS textbooks forever
I Win 1 million dollars for solving a Millenium Prize problem
I Finding a way of generating a proof of anything (assuming the

proof is a reasonable length)
I Win 5 million more dollars for solving the remaining

Millenium Prize problems
I Crack all of modern encryption, and have all the dollars

I Crack all of modern encryption, and have access to all
information, public or private

I Literally cure cancer

31

What if P = NP?

I Have your name be immortalized in CS textbooks forever
I Win 1 million dollars for solving a Millenium Prize problem
I Finding a way of generating a proof of anything (assuming the

proof is a reasonable length)
I Win 5 million more dollars for solving the remaining

Millenium Prize problems
I Crack all of modern encryption, and have all the dollars
I Crack all of modern encryption, and have access to all

information, public or private

I Literally cure cancer

31

What if P = NP?

I Have your name be immortalized in CS textbooks forever
I Win 1 million dollars for solving a Millenium Prize problem
I Finding a way of generating a proof of anything (assuming the

proof is a reasonable length)
I Win 5 million more dollars for solving the remaining

Millenium Prize problems
I Crack all of modern encryption, and have all the dollars
I Crack all of modern encryption, and have access to all

information, public or private
I Literally cure cancer

31

