
CSE 373: P vs NP

Michael Lee
Monday, Mar 5, 2018

1

Overview

Previously:

I We spent a lot of time learning how to solve problems
I We spent a lot of time analyzing algorithms

2

Overview

Today:

I Take a step back and look at the bigger picture
I Discuss an important open question in computer science:

does P = NP?

3

What is “efficiency”?

But first:
What does it mean for a problem to be “efficient”?

What do we even mean by “problem”, anyways?

4

What is a “decision problem”?

Decision problem
A decision problem is any arbitrary yes-or-no question on an
infinite set of inputs.

Which of these are decision problems?

I IS-PRIME: “Is X prime? (Where X is some input)”
Yes, it’s a yes-or-no question.

I FIND-PRIME: “What is the n-th prime number?”
No. The answer is a number, not a boolean.

I SORT: “Sort this list of numbers.”
No; not a question.

I IS-SORTED: “Is this list of numbers sorted?”
Yes, it’s a yes-or-no question.

5

What is a “decision problem”?

Question: Why only talk about decision problems?

Answer: It simplifies things. Also, most problems can be turned
into a decision problem with some tweaking, so not a big deal.

Example:

SHORTEST-PATH: “What is the shortest path between two given
nodes?”

...can be turned into:

PATH: “Does there exist a path between two given nodes that
consists of k edges?”

6

What is a “solvable” problem?

Solvable
A decision problem is solvable if there exists some algorithm that
given any input, or instance, can correctly decide “yes” or “no”.

Example: IS-PRIME is solvable. Here’s an algorithm:

boolean isPrimeSolver(n):

for (int i = 2; i < n; i++):

if (X % i == 0):

return false

return true

7

What is a “solvable” problem?

Question: Are there problems that are unsolvable – problems that
are impossible to solve?

Surprisingly, yes.

We won’t go into that today; look up the “halting problem” if
you’re curious.

8

Definitions

Questions:

I What do we even mean by “problem”, anyways?
I What does it mean for a problem to be “efficient”?

9

What is an “efficient algorithm”?

Efficient algorithm
An algorithm is efficient if the worst-case bound is a polynomial.

Examples: which of these runtime bounds are “efficient”?

I O
(
n2
)
: Yes, it’s a polynomial

I O (2n): No, it’s an exponential
I O (n log(n)): Yes, n log(n) ∈ O

(
n2
)
, which is a polynomial

I O
(
n10000000

)
: Technically yes...

I O
(
30000000000000n3

)
: Technically yes...

10

What is an “efficient algorithm”?

Question: Are n10000000 and 30000000000000n3 actually efficient
in practice?

No, but...

I Once we find a polynomial algorithm to a problem, we’ve
historically been able to improve it to something reasonable

I Finding a polynomial runtime is a VERY low bar. If we can’t
even get that...

11

Examples of problems

Pretty much all problems we’ve studied have efficient solutions!

We’ve studied two main types of algorithms: sorting algorithms
and graph algorithms, and every one we’ve looked at so far could
run in polynomial time.

(e.g “How do I sort this list”, “What is the shortest path”, “What
is the MST”...)

12

Examples of problems

Great: do all solvable problems have efficient solutions?

Haha, no.

Well, ok – do all practical problems we actually care about have
efficient solutions?

lol

13

PATH vs LONGEST-PATH

PATH

Given a graph and two vertices, does there exist some path
between those two vertices that visits exactly k edges?

I To solve, run BFS and see if we visit the dest in k edges.
I We can solve this efficiently!

What if we tweak the problem a little?
LONGEST-PATH

Given a graph, does there exist a path between any two vertices
that visits exactly k edges?

There is no known efficient solution to this problem.

To solve, use brute force.
14

2-COLOR vs 3-COLOR

2-COLOR

Given a graph, is it possible to assign each node one of two colors
such that no two adjacent nodes share the same color?

I To solve, run BFS or DFS, alternate colors...
I We can solve this efficiently!

What if we tweak the problem a little?
3-COLOR

Given a graph, is it possible to assign each node one of three
colors such that no two adjacent nodes share the same color?”

There is no known efficient solution to this problem.

To solve, use brute force: try all O
(
3|V |) combinations.

15

CIRCUIT-VALUE vs CIRCUIT-SAT

CIRCUIT-VALUE

Given a boolean expression such as “a && (b || c)” and the
truth values for every variable, is the final expression T?

I To solve, convert into an abstract syntax tree and evaluate.
I We can solve this efficiently!

CIRCUIT-SAT

Given a boolean expression such as “a && (b || c)” and the
truth values for some of the variables, is there a way to set the
remaining variables so that the output is T?

There is no known efficient solution to this problem.

To solve, use brute force: try every combination of variables.
16

Complexity classes

Observation: Some problems have polynomial solutions, some
have worse.

Can we formalize this?
Complexity class
A complexity class is a set of problems limited by some resource
constraint (time, space, etc)

17

Complexity class: P and EXP

The complexity class P
P is the set of all decision problems where there exists an
algorithm that can solve all inputs in worst-case polynomial time.

Examples: IS-PRIME, IS-SORTED, PATH, 2-COLOR, CIRCUIT-VALUE,
...
The complexity class EXP
EXP is the set of all decision problems where there exists an
algorithm that can solve all inputs in worst-case exponential time.

Examples: LONGEST-PATH, 3-COLOR, CIRCUIT-SAT...

18

Is P a subset of EXP?

Question: Suppose we have some random decision problem in P.
Is that problem also in EXP?

E.g. is 2-COLOR in EXP?

19

Is P a subset of EXP?

There are three reasonable possibilities:

Answer 1: The sets are disjoint
E.g. if a problem is in P, it’s not in EXP. P EXP

Answer 2: The sets overlap
E.g. some, but not all problems in P
are in EXP

P EXP

Answer 3: P is a subset of EXP
All problems in P are also in EXP P EXP

20

Is P a subset of EXP?

It turns out it’s answer 3: P is a subset of EXP.

Answer 3: P is a subset of EXP
All problems in P are also in EXP P EXP

Reason: EXP is the set of decision problems where there exists an
algorithm that solves the problem in worst-case exponential time.

So, if we can find a polynomial-time algorithm to a problem, we
can definitely find an exponential one!

21

Is P a subset of EXP?

Example: We previously showed there exists an O (n) algorithm to
check if a number n is prime:
boolean isPrimeSolver(n):

for (int i = 2; i < n; i++):

if (X % i == 0):

return false

return true

So IS-PRIME ∈ P.

How do we show that IS-PRIME is in EXP?
boolean isPrimeSolver2(n):

for (int i = 0; i < Math.pow(2, n); i++):

print("lol")

return isPrimeSolver(n)

This runs in exponential time and correctly solves all inputs.
So IS-PRIME is also in EXP. 22

Recap

To recap:

I What is a decision problem?
I What does it mean to “solve” a decision problem?
I What does it mean for an algorithm to be “efficient”?

I What is a complexity class?
I P
I EXP
I P is a subset of EXP

I Unfortunately, some problems we care about are in EXP

23

A glimmer of hope...

Observation: Some problems in EXP have an interesting property:

I They may take either polynomial or exponential time to solve,
but either way...

I Checking or verifying if a solution is correct always takes
polynomial time!

Big idea: NP is the set of decision problems that can be verified
in polynomial time.

If we can verify answers efficiently, can we find answers efficiently?

24

Solving vs verifying

Reminder: a solver is an algorithm that accepts an instance of a
decision-problem and returns true or false.

Another kind of algorithm – a verifier

Verifier
A verifier accepts as input:

1. Some instance of the decision problem
2. Some sort of “proof” or certificate of why the solver made

whatever decision it made on that instance.

25

The complexity class NP

The complexity class NP
Suppose that we have some decision problem X where...

I There exists some solver for X
I That solver says “yes” for some instance of X
I Whenever the solver says “yes”, it also returns some sort of

“proof” or certificate of why they said “yes”.

If there exists a verifier that...

I When given the instance and the certificate, always agrees the
correct answer was “yes”

I Always runs in polynomial time

...then X is in NP.
26

The complexity class co-NP

Important note: The verifier only needs to exist when the solver
says “yes”.

If the solver says “no”, we don’t care.

A related complexity class: co-NP. Almost identical to NP, except
for “NO” instances.

27

The complexity class co-NP

The complexity class co-NP
Suppose that we have some decision problem X where...

I There exists some solver for X
I That solver says “no” for some instance of X
I Whenever the solver says “no”, it also returns some sort of

“proof” or certificate of why they said “no”.

If there exists a verifier that...

I When given the instance and the certificate, always agrees the
correct answer was “no”

I Always runs in polynomial time

...then X is in co-NP.
28

Example: showing 3-COLOR is in NP

I claim that 3-COLOR is in NP. How do we show this?

Step 1: Assume the preconditions are met.

Suppose we have a magical solver for 3-COLOR, and it says “yes”
for some graph G.

Step 2: Show that we can build a polynomial-time verifier, given
G and some certificate.

Three things we must do:

1. How do we modify the solver so it returns a convincing
certificate?

2. How do we check the certificate, whatever it is?
3. Does our verifier actually run in polynomial time?

29

Example: showing 3-COLOR is in NP

Part 2a: What would be a convincing certificate?

A map of vertices to colors! E.g.
{v1 = red, v2 = blue, v3 = red, v4 = green, . . .}.

Part 2b: How do we double-check this certificate?

Loop through all vertices, make sure neighbors have diff colors!
boolean verify3Color(G, colorMap):

for (v : G.vertices):

for (w : v.neighbors):

if (colorMap.get(v) == colorMap.get(w)):

return false

return true

Part 2c: Does this verifier run in polynomial time?

Yes! It runs in O (|V |+ |E |) time!

So, 3-COLOR ∈ NP. 30

Example: showing CIRCUIT-SAT is in NP

Question: is CIRCUIT-SAT in NP?
CIRCUIT-SAT

Given a boolean expression such as “a && (b || c)” and the
truth values for some of the variables, is there a way to set the
remaining variables so that the output is T?

As before, assume you have a magical solver, and it said “yes” for
some boolean expression B.

Three questions to answer:

1. How do we modify the solver so it returns a convincing
certificate?

2. How do we check the certificate, whatever it is?
3. Does our verifier actually run in polynomial time?

31

