Consider the following disjoint set.
What happens if we run findSet (8) then union (4, 17)?
Note: the union(...) method internally calls findSet (...).

Warmup

What happens when we run findSet(8)?

Step 1: We find the node corresponding to 8 in $\mathcal{O}(1)$ time

Warmup

What happens when we run findSet (8)?

Step 2: We travel up the tree until we find the root

Warmup

What happens when we run findSet(8)?

Step 3: We move each node we passed by (every red node) to point directly at the root.

Note: we do not update the rank (too expensive)

What happens if we run union(4, 17)?

Warmup

What happens if we run union $(4,17)$?

Step 1: We first run findSet (4)

Warmup

What happens if we run union $(4,17)$?

Step 1: We first run findSet (4).
So we need to crawl up and find the parent...

Warmup

What happens if we run union $(4,17)$?

Step 1: We first run findSet (4).
So we need to crawl up and find the parent... .and make node " 4 " point directly at the root.

Warmup

What happens if we run union $(4,17)$?

Step 2: We next run findSet (17) and repeat the process.

Warmup

What happens if we run union $(4,17)$?

Step 2: We next run findSet (17) and repeat the process.

Warmup

What happens if we run union $(4,17)$?

Step 2: We next run findSet (17) and repeat the process.

Warmup

Warmup

We've finished findSet (4) and findSet (17), so now we need to finish the rest of union $(4,17)$ by linking the two trees together.

Warmup

We've finished findSet (4) and findSet (17), so now we need to finish the rest of union $(4,17)$ by linking the two trees together.

We then update the rank of set 1 and "forget" the rank of set 11 .

Back to Kruskal's

Why are we doing this? To help us implement Kruskal's algorithm:

```
def kruskal():
    for (v : vertices):
        nakeMST(v)
    sort edges in ascending order by their weight
    mst = new SomeSetcEdge>)
    mst (edge : edges):
            if findMST (edge, src) 1- findMST (edge.dst):
                union(edge.srr, edge.dst)
                nst.add(edge)
        return mst
    - makeMST(v) takes \mathcal{O}(\mp@subsup{t}{m}{})\mathrm{ time}
    - findMST(v): takes O}(\mp@subsup{t}{f}{})\mathrm{ time
    * union(u,v): takes O}(\mp@subsup{t}{v}{})\mathrm{ time
```

Why are we doing this? To help us implement Kruskal's algorithm:

Back to Kruskal's

We concluded that the runtime is:

$$
\mathcal{O}(\underbrace{|V| \cdot t_{m}}_{\text {setup }}+\underbrace{|E| \cdot \log (|E|)}_{\text {sorting edges }}+\underbrace{|E| \cdot t_{f}+|V| \cdot t_{u}}_{\text {core loop }})
$$

Well, we just said that in the worst case:

- $t_{m} \in \mathcal{O}(1)$
- $t_{f} \in \mathcal{O}(\log (|V|))$
- $t_{u} \in \mathcal{O}(\log (|V|))$

So the worst-case overall runtime of Kruskal's is:

$$
\mathcal{O}(|V|+|E| \cdot \log (|E|)+(|E|+|V|) \cdot \log (|V|))
$$

Our worst-case runtime:

$$
\mathcal{O}(|V|+|E| \cdot \log (|E|)+(|E|+|V|) \cdot \log (|V|))
$$

One minor improvement: since our edge weights are numbers, we can likely use a linear sort and improve the runtime to:

$$
\mathcal{O}(|V|+|E|+(|E|+|V|) \cdot \log (|V|))
$$

We can drop the $|V|+|E|$ (they're dominated by the last term):

$$
\mathcal{O}(|E|+|V|) \cdot \log (|V|))
$$

...and we're left with something that's basically the same as Prim.

Disjoint-sets, amortized analysis

Iterated \log

The expression $\log _{b}^{*}(n)$ is equivalent to the number of times we repeatedly compute $\log _{b}(x)$ to bring x down to at most 1 .

What does this mean?
or are we?
Observation: each call to findSet (x) improves all future calls.
How much of a difference does that make?
Interesting result:
It turns out union and find are amortized $\log ^{*}(n)$.

Interlude: repeated exponentiation

Observation:

- Multiplication is a shorthand for repeated addition*

$$
2 \times 5=2+2+2+2
$$

- Exponentiation is a shorthand for repeated multiplication*

$$
2^{5}=2 \times 2 \times 2 \times 2 \times 2
$$

- Is there a way of expressing repeated exponentiation?

$$
2 ? 25=2^{2^{2^{2^{2}}}}
$$

- Why stop there - is there a way of expressing repeated whatever-it-is-we-did up above?

$$
2 ? ?!? ? ? 5=2 ? ? 2 ? ? 2 ? ? 2 ? ? 2
$$

*assuming we use only integers 12

Interlude: Knuth's up-arrow notation

Yes - it's called Knuth's up-arrow notation

- Repeated addition (multiplication) is still the same:

$$
2 \times 5=2+2+2+2
$$

- A single arrow means repeated multiplication - exponentiation

$$
2 \uparrow 5=2 \times 2 \times 2 \times 2 \times 2=2^{5}=16
$$

- Two arrows means repeated exponentiation - tetration

$$
2 \uparrow 5=2 \uparrow 2 \uparrow 2 \uparrow 2 \uparrow 2=2^{2^{2^{2^{2}}}}
$$

- Three arrows means repeated tetration

$$
2 \uparrow \uparrow \uparrow 5=2 \uparrow \uparrow 2 \uparrow \uparrow 2 \uparrow \uparrow 2 \uparrow \uparrow 2
$$

- etc...

Interlude: Knuth's up-arrow notation

These functions all also have inverses

- Division is the inverse of multiplication:

$$
\frac{(2 \times 5)}{2}=5
$$

- $\log (\ldots)$ is the inverse of \uparrow (exponentiation)

$$
\log _{2}(2 \uparrow 5)=\log _{2}\left(2^{5}\right)=5
$$

- $\log ^{*}(\ldots)$ is the inverse of $\uparrow \uparrow$ (tetration)

$$
\log _{2}^{*}(2 \uparrow \uparrow 5)=\log _{2}^{*}\left(2^{2^{2^{2^{2}}}}\right)=5
$$

Up-arrows and iterated log

A slightly modified definition:

Iterated \log

The expression $\log _{b}^{*}(n)$ is equivalent to the number of times we repeatedly compute $\log _{b}(x)$ to bring x down to at most 1
This is equivalent to the inverse of $b \uparrow x$.
What does this look like?

- $\log ^{*}(2 \uparrow \uparrow 1)=\log *(2)=\log (2)=1$
- $\log ^{*}(2 \uparrow \uparrow 2)=\log ^{*}\left(2^{2}\right)=\log (\log (4))=2$
- $\log ^{*}(2 \uparrow \uparrow 3)=\log ^{*}\left(2^{2^{2}}\right)=\log (\log (\log (8)))=3$
- $\log ^{*}(2 \uparrow \uparrow 4)=\log ^{*}\left(2^{2^{2^{2}}}\right)=\log (\log (\log (\log (65536))))=4$
- $\log ^{*}(2 \uparrow \uparrow 5)=\log ^{*}\left(2^{2^{2^{2^{2}}}}\right)=$
$\log \left(\log \left(\log \left(\log \left(\log \left(2^{65536}\right)\right)\right)\right)\right)=5$

A big number

And what exactly is 2^{65536} ?
$=2003529930406846464979072351560255750447825475569751419$ 2650169737108940595563114530895061308809333481010382343429072 6318182294938211881266886950636476154702916504187191635158796 6347219442930927982084309104855990570159318959639524863372367 2030029169695921561087649488892540908059114570376752085002066 7156370236612635974714480711177481588091413574272096719015183 6282560618091458852699826141425030123391108273603843767876449 0432059603791244909057075603140350761625624760318637931264847 0374378295497561377098160461441330869211810248595915238019533 1030292162800160568670105651646750568038741529463842244845292 5373614425336143737290883037946012747249584148649159306472520 1515569392262818069165079638106413227530726714399815850881129 2628901134237782705567421080070065283963322155077831214288551

A big number

Note: in the interests of saving space, the handouts only contain the first 800 or so digits of the number.

We've omitted the remaining digits, which take up an additional 20 slides.

A big number

If we count, $2 \uparrow \uparrow 5$ has 19729 digits!
And yet, $\log ^{*}(2 \uparrow \uparrow 5)$ equals just 5 !
Punchline? $\log ^{*}(n) \leq 5$, for basically any reasonable value of n.
Runtime of Kruskal?

$$
\mathcal{O}\left((|E|+|V|) \log ^{*}(|V|)\right) \leq \mathcal{O}((|E|+|V|) 5) \approx \mathcal{O}(|E|+|V|)
$$

The Ackermann function

The Ackermann function is a recursive function designed to grow extremely quickly:

$$
A(m, n)= \begin{cases}n+1 & \text { if } m=0 \\ A(m-1,1) & \text { if } m>0 \text { and } n=0 \\ A(m-1, A(m, n-1)) & \text { if } m>0 \text { and } n>0\end{cases}
$$

This function grows even more quickly then $m \uparrow \uparrow n$-this means the inverse Ackermann function $\alpha(\ldots)$ grows even more slowly then $\log ^{*}(\ldots)!$
So, the runtime of Kruskal's is even better! It's

$$
\mathcal{O}((|E|+|V|) \alpha(|V|)) \leq \mathcal{O}((|E|+|V|) 4)
$$

...for any practical size of $|V|$.

But wait, there's more!

To recap, we found that the runtimes of findSet (...) and union(...) were...

- Originally $\mathcal{O}(n)$
- After applying union-by-rank, $\mathcal{O}(\log (n))$
- After applying path compression, $\mathcal{O}(\alpha(n)) \approx \mathcal{O}(1)$
- One final optimization: array representation.

It doesn't lead to an asymptotic improvement, but it does lead to a constant factor speedup (and simplifies implementation).

Array representation

So far, we've been thinking about disjoint sets in terms of nodes and pointers.

For example:

```
private static class Node <
    private int vertenNumber;
    private Node parent;
)
```

Observation: It seems wasteful to have allocate an entire object just to store two fields

Array representation

Java is technically allowed to store and represent its objects however it wants, but in a modern 64-bit JDK, this object will probably be 32 bytes:

- The int field takes up 4 bytes
- The pointer to the parent takes up 8 bytes (assuming 64 -bit)
- The object itself also uses up an additional 16 bytes
- This adds up to 28 , but in a 64 bit computer, we always "pad" or round up to the nearest multiple of 8 . So, this object will use up 32 bytes of memory.

Array representation

Array representation

Example:

So, rather then using 32 bytes per element, we use just 4!
Question: Where do we store the ranks?
Observation: Hey, each root has some unused space...
Idea 1: Rather then leaving the root cells empty, just stick the ranks there.

Array representation

Problem: How do we tell whether a number is supposed to be a rank or an index to the parent?

A trick: Rather then storing just the rank, let's store the negative of the rank!

So, if a number is positive, it's an index. If the number is negative, it's a rank (and that node is a root).

Example:

What's wrong with this idea?

Array representation

Example:

What's wrong with this idea?

Array representation

Problem: What's the difference between 0 and -0 ?
Solution: Instead of just storing -rank, store -rank - 1 .
(Alternatively, redefine the rank to be the upper bound of the number of levels in the tree, rather then the height.)

Array representation

Example:

-1	-4	1	2	2	2	1	6	7	7	7	-4	11	12	12	11	15	15	17

Now you try - what is the array representation of this disjoint set?

53
And that's it for graphs. Topics covered:

- Graph definitions, graph representations
- Graph traversal: BFS and DFS
- Finding the shortest path: Dijkstra's algorithm
- Topological sort
- Minimum spanning trees: Prim's and Kruskal's
- Disjoint sets

\square

