Last time

CSE 373: Disjoint sets
> Prim'’s algorithm:
Nearly identical to Dijkstra's, except we use the distance to
any already-visited node as the cost.
Michael Lee
Wednesday, Feb 28, 2018

> Kruskal's algorithm:
Loop over edges, from smallest to largest. Use the edge only
if it doesn't introduce a cycle

Kruskal’s algorithm: example with a weighted graph Kruskal’s algorithm: example with a weighted graph

Example of the algorithm: Example of the algorithm:

Kruskal’s algorithm: example with a weighted graph Kruskal’s algorithm: example with a weighted graph

Example of the algorithm: Example of the algorithm:

Kruskal's algorithm: example with a weighted graph Kruskal's algorithm: example with a weighted graph

Example of the algorithm: Example of the algorithm:

8 7

1 2
3
Kruskal’s algorithm: example with a weighted graph Kruskal’s algorithm: example with a weighted graph
Example of the algorithm: Example of the algorithm:

8 7

Kruskal’s algorithm: example with a weighted graph Kruskal’s algorithm: example with a weighted graph

Example of the algorithm: Example of the algorithm:

Kruskal's algorithm: example with a weighted graph Kruskal's algorithm: example with a weighted graph

Example of the algorithm: Example of the algorithm:

Kruskal’s algorithm: example with a weighted graph Kruskal’s algorithm: example with a weighted graph

Example of the algorithm: Example of the algorithm:

8 7

8

Kruskal’s algorithm: example with a weighted graph Kruskal’s algorithm: example with a weighted graph

Example of the algorithm: Example of the algorithm:

8 7 8

Kruskal's algorithm: example with a weighted graph Kruskal's algorithm: example with a weighted graph

Example of the algorithm: Example of the algorithm:

8 8

Kruskal’s algorithm: example with a weighted graph Kruskal’s algorithm: example with a weighted graph

Example of the algorithm: Example of the algorithm:

8 7

Kruskal’s algorithm: example with a weighted graph Kruskal’s algorithm: example with a weighted graph

Example of the algorithm: Example of the algorithm:

Kruskal's algorithm: example with a weighted graph Kruskal's algorithm: example with a weighted graph

Example of the algorithm: Example of the algorithm:

Kruskal’s algorithm: example with a weighted graph Kruskal’s algorithm: example with a weighted graph

Example of the algorithm: Example of the algorithm:

Kruskal’s algorithm: example with a weighted graph Kruskal’s algorithm: example with a weighted graph

Example of the algorithm: Example of the algorithm:

Kruskal’s algorithm: example with a weighted graph Kruskal

Example of the algorithm

algorithm: analysis

Runtime analysis:

sort edges in ascanding order by their weight

mst = new Soneset<Eage>()
for (edgo : sdges).
IF FindiST(edge.sre) 1= FinatsT
unon(edge sre. edge.dst)
=)

Note: assume that.

> nakeMST(v) takes O (tm) time
> findMST(v): takes O (tr) time
> union(u, v): takes O (t,) time .

Kruskal’s algorithm: analysis

> Making the |V| MSTs takes O (|V|-tn) time

> Sorting the edges takes O (|E|-log(|E|)) time, assuming we
use a general-purpose comparison sort

> The final loop takes O (|E| ¢ + |V]-t,) time

Putting it all together

O(V] - tm + |E|log(|E]) + | E| -t + | V| -1)

The DisjointSet ADT

But wait, what exactly is tm, tr, and t,? How exactly do we
implement nakeMST(v), findMST(v), and union(u, v)?

We can do so using a new ADT called the Disjointset ADT!

Interlude: What is a set? The DisjointSet ADT

Review: what is a set?

> Asetis a "bag” of elements arranged in no particular order.

> A set may not contain duplicates
We implemented a set in project 2: ChainedHashset

Interesting note: sets come up all the time in math.

Properties of a disjoint-set data structure:

»> A disjoint-set data structure maintains a collection of many
different sets.
> An item may not be contained within multiple sets
Each set must be disjoint.
> Each set s associated with some representative.
What is a representative? Any sort of unique “identifier’
Examples:
> We could pick some arbitrary element in the set to be the
representative”
> We could assign each set some unique integer id.

The DisjointSet ADT The DisjointSet ADT

Example:
makeSet (a)
A disjoint-set has the following core operations: e
makeSet (c)
> makeSet(x) - Creates a new set where the only member is x. e
We assign that set a representative AT
> findSet(x) -~ Looks up the set containing x. Then, returns
the representative of that set.
> union(x, y) - Looks up the set containing x and the set
containing y. We combine these two sets together into one.
We (arbitrarily) pick one of the two representatives to be the
representative of this new set
9 10

The DisjointSet ADT The DisjointSet ADT

Example: Example:

makeSet (a) nakeSet(a)

nakeSet (b) makeSet (b)

nakeset(c) R0 makeSet (c) Rep: 4
nakeset (d) makeSet (d)

nakeset(e) makeSet (e)

print(findset(a))

Rep 2 Rep 3 print(findSet())

Rep: 2 Rep: 3

Rep: 0 Rep: Rep: 0 Rep: 1

The DisjointSet ADT The DisjointSet ADT

Example: Example:

nakeSet (a) makeSet (a)

nakeSet (b) makeSet (b)

nakeSet(c) Rep: 4 makeset(c) Rep: ¢
nakeSet (d) makeSet (d)

nakeSet (e) © makeSet (e) ©
print(findSet(a)) print(findSet(a))

print (Findset(d)) Cz2 @z print(FindSet(dyy R0 Rl

union(a,) union(a,)
union(b, d) union(b, d)

print(findset(a) print(findset(a)
print(findset(a) print(findset(a)

Rep: 0 Rep:

The DisjointSet ADT The DisjointSet ADT

Example: Example:
nakeSet(a) nakeSet (2)
nakeSet(b) nakeset (b)
makeSet (c) Rep: 4 makeSet (c) Rep: 4
makeSet (d) makeSet (d)
© ©
print(findset(a)) . print(Findset(a))
print(findset(d)) 20 (a8 print(findset(d))
union(a, c) < union(a, ¢)
union(b, d) union(b, d)
print(findSet (a) == findSet()) print(findSet(a) == findSet())
print(findset (a) == findSet(d)) print(findset(a) == findset(d))
a
union(c, b) union(c, b)
print(findSet (a) == findSet(d)) print(findSet(a) == findSet(d))

The DisjointSet ADT DisjointSet: implementation

So, how do we implement these?

ration int- n?
What operations does a disjoint-set NOT support Core iden:
Answer: The abilty to actually get the entire set

> We represent each st a5 a tree
We can make a set, check if an item is in a set, and combine two o
sets, but we don't have a built-in way of getting the entire set © e ersteidio T cites
Ee=p Intuitions:

Insight: The few operations we need to support, the more creative

our implementation can be O WBGES I O REET
Combining two trees is cheap; we just manipulate pointers.
(If the client really wants the sets, they can get it themselves in i .
() time — how?) > We want a single “representative” per set.
X A tree has a single root!

DisjointSet: implementation DisjointSet: implementation

Suppose v call makeSet(.....) on O through 5.

High-level overview: ® @ ® ® ® O
> makeSet(x): Adds a new tree (of size 1) to our “forest”
> findset(x): Looks up the node, then finds root of tree

> union(x, y): Combines two trees into one
Each makeSet(...) adds a new tree to our “forest'

Note that right now, each tree has only one element

DisjointSet: implementation DisjointSet: implementation

Suppose we call union(3,).

@ @ @ @ Suppose we call union(5, 4).
© O 6 @

We combine those two trees into one.

Assumption: we have an O (1) way of getting cach node.

maintain a hashm m
A S e Algorithm: Find the roots of both trees and add one tree s a
subchild of the other.

Question: how do we implement findset(...)?

Once we find a node, move upwards until we're looking at root. Which tree becomes the new root? For now, pick randomly.

Then, return the root's data field.

DisjointSet: implementation DisjointSet: implementation

Now, suppose we call union(2

4). What happens?
@
0160
®O®

Suppose we call union(0, 1), then union(2, ©).

DisjointSet: implementation

DisjointSet: Analysis
Now, suppose we call union(2, 4). What happens?

TV What's the worst-case runtime of our methods?
Better question: are our trees guaranted to be balanced?

Hint: When union-ing, we pick which tree is nested randomly.
Does that guarantee we'll get a balanced tree?

We look up 2 and 3, find their roots, and nest one tree inside the
other

DisjointSet: Analysis DisjointSet: implementation

The worst-case scenario:

So, what are the worst-case runtimes?

> makeSet(x)

©(1) - creating the tree takes constant time
> findset(x)

O (n) = if t's a linked list, we need to traverse n elements!
> union(x, y)

O (n) = union calls findSet(...) on both elements

where n is the total number of items added to the disjoint-set

Possible outcome of calling union(0, 5)

Improving DisjointSet Union-by-rank

Problem: Our trees could be unbalanced

How can we improve disjoint sets? Solution:
. Let rank(x) be a number representing the upper-bound of the
1. Union-by-rank:
height of x. So, rank(x) > height(x)

Strategy to make sure trees are balanced
2. Path compression: Weithen

Hijack findSet (x) and make it do a little extra work to A, et er el s

improve overall performance. 2. When unioning, make the tree with the larger rank the root!
3. Array representation:

3. Ifit's a tie, pick one randomly and increase the rank by one.
Takes advantage of cache locality, simplifies implementation,

ca (Why ot keep track of the height? When we look at path
compression, keeping track of the height becomes more
challenging.)
= =
Union-by-rank Union-by-rank
Example: Suppose we call union(1, 5)? Example: Suppose we call union(1, 5)?
=1 =0 =2 =2 =2 =0 =2
O] ® @ O ®
©) OJORNOIOX) QOO U
® ®)0 ®
2 2

The tree with the root of “6" has the larger rank, so we make it

The tree with the root of “6” has the larger rank, so we make it
the oot

the root.

Note: we're not really “removing” the rank from node 0 — it's just Note: we're not really “removing” the rank from node 0 —

's just

Union-by-rank Union-by-rank

Example: Suppose we call union(1, 5)? Example: Suppose we call union(s, 11)?

The tree with the root of “6" has the larger rank, so we make it @
the roor
Note: we're not reall “removing” the rank from node 0 — i’s just Here, there's a tie. We break the tie arbitarily, and increment the

irrelevant, so we're ignoring it and omitting it from the diagram to et eokyen

save space. We only care about the ranks at the roots.

Union-by-rank Path compression

Consider the following forest:

Net effect? Our trees stay relatively balanced O]

® ®
> makeSet (x)
O(1) - still the same ® ®@

> findset(x)

O (log(n)) - since the tree is balanced ®wW ®O
> union(x, y).

O ((n) — since union calls Findset OX®)

So, what are the worst-case runtimes now?

Suppose we call findSet(3) a few hundred times,

. Why do we have to keep finding the root again and again?

Path compression Path compression

Observatio

To find root, we must also traverse these nodes: Observatio

To find root, we must also traverse these nodes:

What if, next time, we could just jump straight to the root? What if, next time, we could just jump straight to the root?

Same for the other nodes we visited Same for the other nodes we visited

Path compression Path compression

Observation: To find root, we must also traverse these nodes: So, let's do it!

What i, next time, we could just jump straight to the root?

Same for the other nodes we visited

Now what happens if we try calling findSet(3)?

Path compression Path compression

So, let's do it! So, let's do it!
@ 0
g @ 6 W g @ ©® ® W
©OXT) ®@ 0B O ® @
) ®© ®©O

Now what happens if we try calling FindSet(3)? Now what happens if we try calling Findset(3)?

Path compression Path compression

So, let's do it!

2 One additional note: path compression changes the heights of our
©) ® B O trees.

This means it could be the case that rank # height.
OO O ® @ Is this 2 problem?

@ ® Answer: No; proof is beyond the scope of this class

Now what happens if we try calling findset(3)?

Path compression: runtime

Now, what are the worst-case and best-case runtime of the

following?

> makeSet(x):

O(1) - still the same
> findset(x)

In the best case, O (1), in the worst case O (log(n))
> union(x, y)

In the best case, O (1), in the worst case O (loa(n))

Back to Kruskal's

Why are we doing this? To help us implement Kruskal's algorithm:
def kruskal()
for (v < vertices).
akeHSTCr)
sort edges in ascending order by their welght
nst = new SomeSet<Edge>()
for (edge : sdges).
£ FindST(edge src) 1= FindWSTedge dst)
union(edge sre, edge.dst)
st add(edge)

> makeMST(v) takes O (ta) time

> FindMST(v): takes O () time
> union(u, v): takes O (t,) time

Back to Kruskal's

We concluded that the runtime is

O | VI tm+ |E|-log(|E]) + |E|-t; + |V]-t,
BEAENHAR MRS

wlip sorting edges core foop

Well, we just said that in the worst case:

> tne0()
>t € O (log(|V])
>, € O log(|V])

So the worst-case overall runtime of Kruskal's is

O (V| + |E|-log(|E]) + (|E| + |V|)-log(|V]))

Back to Kruskal's

Our worst-case runtime:
O (V] + |Ellog(EI) + ([E| + V) log(| V)
One minor improvement: since our edge weights are numbers, we
can likely use a finear sort and improve the runtime to
O(V| +[E| + (|E] + |V])-log(|V]))
We can drop the |V + |E], since they're dominated by the last

term
O(IE|+|VI)-log(|V]))

and we're left with something that's basically the same as Prim's

algorithm

Disjoint-sets, amortized analysis

or are we?

Observation: each call to findSet (x) improves all future calls

How much of a difference does that make?
Interesting result

It turns out union and find are amortized log” (n).

Disjoint-sets, amortized analysis

Iterated log
The expression log”(n) is equivalent to the number of times you
need to compute log(x) to bring the value down to at most 1

Example
> log(2) = 1
> log'(4) = los(log(4)) = 2
> log?(5) = log(log(log(3))) =
> log?(65536) = log? (2%) =4
> log(@95%) =... =5

_ REG T

5243410174601380632476560280415199775477703138064781342300506

190060654591
" i —) 6316205357936
11
1045271
47144807111 430101
1148136364083647
o 186:
035091 0525660978150720861141430305816927924971409161059417185352275
735
40
040511
28y m
" 173660
2194016069517690156119726982337890017641517190051133466306898 cost
1006403 0
621 1 12380211
35
A big number A big number
46115651
1
78751 q
1 got tired of copying and pasting, but we're not even a fourth of
o the way through.
7
Punchline? log’ () < 5, for basically any reasonable value of n.
6773783731 Runtime of Kruskal? O (€| +|V/)log"(|V])) ~ O (|E| + |V])
70291208161
101 47600
T O “
034

1661174906175266714926721761283308452730364692445828925713888

9957440801727144146170559226175083389020074160926236300282286

Inverse of the Ackerman functi

But wait!

Somebody then came along and proved that find and union are
amortized O (a(n)) ~ the inverse of the Ackermann function

This grows even more slowly then log" (n)!

