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Minimum spanning trees

Punchline: a MST of a graph connects all the vertices together
while minimizing the number of edges used (and their weights).

Minimum spanning trees
Given a connected, undirected graph G = (V ,E), a minimum
spanning tree is a subgraph G ′ = (V ′,E ′) such that...

I V = V ′ (G ′ is spanning)
I There exists a path from any vertex to any other one
I The sum of the edge weights in E ′ is minimized.

In order for a graph to have a MST, the graph must...

I ...be connected – there is a path from a vertex to any other
vertex. (Note: this means |V | ≤ |E |).

I ...be undirected.
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Minimum spanning trees: example

An example of an minimum spanning tree (MST):
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Minimum spanning trees: Applications

Example questions:

I We want to connect phone lines to houses, but laying down
cable is expensive. How can we minimize the amount of wire
we must install?

I We have items on a circuit we want to be “electrically
equivalent”. How can we connect them together using a
minimum amount of wire?

Other applications:

I Implement efficient multiple constant multiplication
I Minimizing number of packets transmitted across a network
I Machine learning (e.g. real-time face verification)
I Graphics (e.g. image segmentation)
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Minimum spanning trees: properties

Important properties:

I A valid MST cannot contain a cycle

I If we add or remove an edge from an MST, it’s no longer a
valid MST for that graph.
Adding an edge introduces a cycle; removing an edge means
vertices are no longer connected.

I If there are |V | vertices, the MST contains exactly |V | − 1

edges.
I An MST is always a tree.
I If every edge has a unique weight, there exists a unique MST.
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Minimum spanning trees: algorithm

Design question: how would you implement an algorithm to find
the MST of some graph, assuming the edges all have the same
weight?

Hints:

I Try modifying DFS or BFS.
I Try using an incremental approach: start with an empty

graph, and steadily add nodes and edges.
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Minimum spanning trees: approach 1, adding nodes

Intuition: We start with an “empty” MST, and steadily grow it.

Core algorithm:

1. Start with an arbitrary node.
2. Run either DFS or BFS, storing edges in our stack or queue.
3. As we visit nodes, add each edge we remove to our MST.
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Minimum spanning trees: approach 1, adding nodes

An example using a modified version of DFS:
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An example using a modified version of DFS:
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Minimum spanning trees: approach 1, adding nodes

An example using a modified version of DFS:
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Stack: (a, b), (d , e), (d , f ), (d , g),
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Minimum spanning trees: approach 1, adding nodes

An example using a modified version of DFS:
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Stack: (a, b), (d , e), (d , f ), (g , h), (g , i),
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Minimum spanning trees: approach 1, adding nodes

An example using a modified version of DFS:
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Minimum spanning trees: approach 1, adding nodes

An example using a modified version of DFS:
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Stack: (a, b), (e, c),
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Minimum spanning trees: approach 1, adding nodes

An example using a modified version of DFS:
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Minimum spanning trees: approach 1, adding nodes

What if the edges have different weights?

Observation:

We solved a similar problem earlier this quarter, when studying
shortest path algorithms!
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Interlude: finding the shortest path

Review: How do we find the shortest path between two vertices?

I If the graph is unweighted: run BFS

I If the graph is weighted: run Dijkstra’s

How does Dijkstra’s algorithm work?

1. Give each vertex v a “cost”: the cost of the shortest-known
path so far between v and the start.
(The cost of a path is the sum of the edge weights in that path)

2. Pick the node with the smallest cost, update adjacent node
costs, repeat
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Minimum spanning trees: approach 1, adding nodes

Intuition: We can use the same idea to find a MST!

Core idea: Use the exact same algorithm as Dijkstra’s algorithm,
but redefine the cost:

I Previously, for Dijkstra’s:
The cost of vertex v is the cost of the shortest-known path so
far between v and the start

I Now:
The cost of vertex v is the cost of the shortest-known path so
far between v and any node we’ve visited so far

This algorithm is known as Prim’s algorithm.
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Compare and contrast: Dijkstra vs Prim

Pseudocode for Dijkstra’s algorithm:

def dijkstra(start):

backpointers = new SomeDictionary<Vertex, Vertex>()

for (v : vertices):

set cost(v) to infinity

set cost(start) to 0

while (we still have unvisited nodes):

current = get next smallest node

for (edge : current.getOutEdges()):

newCost = min(cost(current) + edge.cost, cost(edge.dst))

update cost(edge.dst) to newCost

backpointers.put(edge.dst, edge.src)

return backpointers
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Compare and contrast: Dijkstra vs Prim

Pseudocode for Prim’s algorithm:

def prim(start):

backpointers = new SomeDictionary<Vertex, Vertex>()

for (v : vertices):

set cost(v) to infinity

set cost(start) to 0

while (we still have unvisited nodes):

current = get next smallest node

for (edge : current.getOutEdges()):

newCost = min(edge.cost, cost(edge.dst))

update cost(edge.dst) to newCost

backpointers.put(edge.dst, edge.src)

return backpointers
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Prim’s algorithm: an example
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Prim’s algorithm: an example
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We initially set all costs to ∞, just like with Dijkstra.
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Prim’s algorithm: an example
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We pick an arbitrary node to start.
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Prim’s algorithm: an example
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We update the adjacent nodes.
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Prim’s algorithm: an example
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We select the one with the smallest cost.
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We potentially need to update h and c, but only c changes.
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Prim’s algorithm: an example
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We (arbitrarily) pick c.
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Prim’s algorithm: an example
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...and update the adjacent nodes. Note that we don’t add the
cumulative cost: the cost represents the shortest path to any green
node, not to the start.
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Prim’s algorithm: an example
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i has the smallest cost.

14



Prim’s algorithm: an example
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We update both unvisited nodes, and modify the edge to h since
we now have a better option.
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f has the smallest cost.
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Again, we update the adjacent unvisited nodes.

14



Prim’s algorithm: an example

a
0

b
4

c
8

d
7

e
10

f
4

g
2

h
7

i
2

4

8

8

11

7

4

2 9

14

10

21

6
7

g has the smallest cost.
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We update h again.
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h has the smallest cost. Note that there nothing to update here.
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d has the smallest cost.
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We can update e.
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Prim’s algorithm: an example
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e has the smallest cost.
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Prim’s algorithm: an example
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There are no more nodes left, so we’re done.
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Prim’s algorithm: another example

Now you try. Start on node a.
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Prim’s algorithm: another example

Now you try. Start on node a.
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Analyzing Prim’s algorithm

Question: What is the worst-case asymptotic runtime of Prim’s
algorithm?

Answer: The same as Dijkstra’s: O (|V |ts + |E |tu) where...

I ts = time needed to get next smallest node
I tu = time needed to update vertex costs

So, O (|V | log(|V |) + |E | log(|V |)) if we stick to data structures
we know how to implement; O (|V | log(|V |) + |E |) if we use
Fibonacci heaps.
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Minimum spanning trees, approach 2

Recap: Prim’s algorithm works similarly to Dijkstra’s – we start
with a single node, and “grow” our MST.

A second approach: instead of “growing” our MST, we...

I Initially place each node into its own MST of size 1 – so, we
start with |V | MSTs in total.

I Steadily combine together different MSTs until we have just
one left

I How? Loop through every single edge, see if we can use it to
join two different MSTs together.

This algorithm is called Kruskal’s algorithm

17
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Kruskal’s algorithm
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Kruskal’s algorithm: weighted graphs

Question: How do we handle edge weights?

Answer: Consider edges sorted in ascending order by weight.

So, we look at the edge with the smallest weight first, the edge
with the second smallest weight next, etc.
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Kruskal’s algorithm: pseudocode

Pseudocode for Kruskal’s algorithm:
def kruskal():

mst = new SomeSet<Edge>()

for (v : vertices):

makeMST(v)

sort edges in ascending order by their weight

for (edge : edges):

if findMST(edge.src) != findMST(edge.dst):

union(edge.src, edge.dst)

mst.add(edge)

return mst

I makeMST(v): stores v as a MST containing just one node
I findMST(v): finds the MST that vertex is a part of
I union(u, v): combines the two MSTs of the two given

vertices, using the edge (u, v) 20



Kruskal’s algorithm: example with a weighted graph

Now you try:
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Kruskal’s algorithm: analysis

What is the worst-case runtime?
def kruskal():

mst = new SomeSet<Edge>()

for (v : vertices):

makeMST(v)

sort edges in ascending order by their weight

for (edge : edges):

if findMST(edge.src) != findMST(edge.dst):

union(edge.src, edge.dst)

mst.add(edge)

return mst

Note: assume that...

I makeMST(v) takes O (tm) time
I findMST(v): takes O (tf ) time
I union(u, v): takes O (tu) time 22



Kruskal’s algorithm: analysis

I Making the |V | MSTs takes O (|V |·tm) time
I Sorting the edges takes O (|E |·log(|E |)) time, assuming we

use a general-purpose comparison sort
I The final loop takes O (|E |·tf + |V |·tu) time

Putting it all together:

O (|V | · tm + |E |·log(|E |) + |E |·tf + |V |·tu)

23



Kruskal’s algorithm: analysis

I Making the |V | MSTs takes O (|V |·tm) time
I Sorting the edges takes O (|E |·log(|E |)) time, assuming we

use a general-purpose comparison sort
I The final loop takes O (|E |·tf + |V |·tu) time

Putting it all together:

O (|V | · tm + |E |·log(|E |) + |E |·tf + |V |·tu)

23



The DisjointSet ADT

But wait, what exactly is tm, tf , and tu? How exactly do we
implement makeMST(v), findMST(v), and union(u, v)?

We can do so using a new ADT called the DisjointSet ADT!
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