CSE 373: Topological Sort and Minimum Spanning Trees

Michael Lee

Friday, Feb 23, 2018

Topological sort

Design question: suppose we have a bunch of classes with pre-requisites.

Topological sort

Design question: suppose we have a bunch of classes with pre-requisites.

Goal: list out classes in a "valid" order
For example: $126,142,143,374,373,417,410,413, \mathrm{XYZ}, 415$

Topological sort

Topological sort

Given a directed, acyclic graph (DAG), running topological sort on that graph will produce a list of all the vertices in an order such that no vertex appears before another vertex that has an edge to it.

Topological sort

Topological sort

Given a directed, acyclic graph (DAG), running topological sort on that graph will produce a list of all the vertices in an order such that no vertex appears before another vertex that has an edge to it.

Example applications:

- Any scheduling problem (scheduling courses, scheduling threads)
- Computing order to recompute cells in spreadsheet
- Determining order to compile files using a MAkefile

In general: taking a dependency graph and coming up with order of execution.

Topological sort

Questions

- Can we perform topo-sort on graphs containing cycles?
- Is there always one unique output per graph?

Topological sort

Questions

- Can we perform topo-sort on graphs containing cycles?

No: how do we decide which node comes first?

- Is there always one unique output per graph?

No: see example on inked slides

Topological sort: algorithm

Intuition:

- The only nodes we can start with are also nodes that have in-degree 0

Topological sort: algorithm

Intuition:

- The only nodes we can start with are also nodes that have in-degree 0
- So, start by adding those to the list

Topological sort: algorithm

Intuition:

- The only nodes we can start with are also nodes that have in-degree 0
- So, start by adding those to the list
- Is there some way of "repeating" this process?

Topological sort

Setup

- Look at each vertex and record its in-degree somewhere

Topological sort

Setup

- Look at each vertex and record its in-degree somewhere

Core loop

- Choose an arbitrary vertex a with in-degree 0

Topological sort

Setup

- Look at each vertex and record its in-degree somewhere

Core loop

- Choose an arbitrary vertex a with in-degree 0
- Output a and conceptually remove it from the graph

Topological sort

Setup

- Look at each vertex and record its in-degree somewhere

Core loop

- Choose an arbitrary vertex a with in-degree 0
- Output a and conceptually remove it from the graph
- For each vertex b adjacent to a, decrement the in-degree of b

Topological sort

Setup

- Look at each vertex and record its in-degree somewhere

Core loop

- Choose an arbitrary vertex a with in-degree 0
- Output a and conceptually remove it from the graph
- For each vertex b adjacent to a, decrement the in-degree of b
- Repeat

Topological sort: Example 1

Example again:

Output:

Topological sort: Example 1

Example again:

Output:

Topological sort: Example 1

Example again:

Output: CSE142,

Topological sort: Example 1

Example again:

Output: CSE142,

Topological sort: Example 1

Example again:

Output: CSE142, MATH126,

Topological sort: Example 1

Example again:

Output: CSE142, MATH126,

Topological sort: Example 1

Example again:

Output: CSE142, MATH126, CSE143,

Topological sort: Example 1

Example again:

Output: CSE142, MATH126, CSE143,

Topological sort: Example 1

Example again:

Output: CSE142, MATH126, CSE143, CSE374,

Topological sort: Example 1

Example again:

Output: CSE142, MATH126, CSE143, CSE374,

Topological sort: Example 1

Example again:

Output: CSE142, MATH126, CSE143, CSE374, CSE373,

Topological sort: Example 1

Example again:

Output: CSE142, MATH126, CSE143, CSE374, CSE373,

Topological sort: Example 1

Example again:

Output: CSE142, MATH126, CSE143, CSE374, CSE373, CSE413,

Topological sort: Example 1

Example again:

Output: CSE142, MATH126, CSE143, CSE374, CSE373, CSE413,

Topological sort: Example 1

Example again:

Output: CSE142, MATH126, CSE143, CSE374, CSE373, CSE413, CSE410,

Topological sort: Example 1

Example again:

Output: CSE142, MATH126, CSE143, CSE374, CSE373, CSE413, CSE410,

Topological sort: Example 1

Example again:

Output: CSE142, MATH126, CSE143, CSE374, CSE373, CSE413, CSE410, XYZ,

Topological sort: Example 1

Example again:

Output: CSE142, MATH126, CSE143, CSE374, CSE373, CSE413, CSE410, XYZ, CSE417,

Topological sort: Example 1

Example again:

Output: CSE142, MATH126, CSE143, CSE374, CSE373, CSE413, CSE410, XYZ, CSE417, CSE415

Topological sort: Example 1

Example again:

Output: CSE142, MATH126, CSE143, CSE374, CSE373, CSE413, CSE410, XYZ, CSE417, CSE415

Topological sort: Example 2

Now you try. List one possible output:

Topological sort: Example 2

Now you try. List one possible output:

One possible answer: a, b, g, c, e, h, d, i, f, j, k

Topological sort: Algorithm

Our algorithm so far:

Setup

- Look at each vertex and record its in-degree somewhere

Core loop

- Choose an arbitrary vertex a with in-degree 0
- Output a and conceptually remove it from the graph
- For each vertex b adjacent to a, decrement the in-degree of b
- Repeat

Topological sort: Algorithm

One possible implementation:

```
def toposort(graph):
    indegrees = new HashMap<Vertex, Integer>()
    visited = new HashSet<Vertex>()
    output = new AnyList<Vertex>()
    compute all indegrees and add to dictionary
    while (we still need to visit vertices):
        current = getNextVertex(indegrees, visited)
        add current to both visited and output
        for (v : current.allNeighbors()):
            indegrees[v] -= 1
    return output
def getNextVertex(indegrees, visited):
    for (node, num : indegrees):
        if (num == 0 and node not in visited):
            return node
```


Topological sort: Algorithm

One possible implementation:

```
def toposort(graph):
    indegrees = new HashMap<Vertex, Integer>()
    visited = new HashSet<Vertex>()
    output = new AnyList<Vertex>()
    compute all indegrees and add to dictionary
    while (we still need to visit vertices):
        current = getNextVertex(indegrees, visited)
        add current to both visited and output
        for (v : current.allNeighbors()):
            indegrees[v] -= 1
    return output
def getNextVertex(indegrees, visited):
    for (node, num : indegrees):
        if (num == 0 and node not in visited):
            return node
```


Questions:

Worst-case runtime?

Topological sort: Algorithm

One possible implementation:

```
def toposort(graph):
    indegrees = new HashMap<Vertex, Integer>()
    visited = new HashSet<Vertex>()
    output = new AnyList<Vertex>()
    compute all indegrees and add to dictionary
    while (we still need to visit vertices):
        current = getNextVertex(indegrees, visited)
        add current to both visited and output
        for (v : current.allNeighbors()):
            indegrees[v] -= 1
    return output
def getNextVertex(indegrees, visited):
    for (node, num : indegrees):
        if (num == 0 and node not in visited):
            return node
```


Topological sort: Algorithm

One possible implementation:

```
def toposort(graph):
    indegrees = new HashMap<Vertex, Integer>()
    visited = new HashSet<Vertex>()
    output = new AnyList<Vertex>()
    compute all indegrees and add to dictionary
    while (we still need to visit vertices):
        current = getNextVertex(indegrees, visited)
        add current to both visited and output
        for (v : current.allNeighbors()):
            indegrees[v] -= 1
    return output
def getNextVertex(indegrees, visited):
    for (node, num : indegrees):
        if (num == 0 and node not in visited):
            return node
```


Questions:

Worst-case runtime?

$\mathcal{O}\left(|V|^{2}+|E|\right)$

Is this optimal?

Topological sort: Algorithm

One possible implementation:

```
def toposort(graph):
    indegrees = new HashMap<Vertex, Integer>()
    visited = new HashSet<Vertex>()
    output = new AnyList<Vertex>()
    compute all indegrees and add to dictionary
    while (we still need to visit vertices):
        current = getNextVertex(indegrees, visited)
        add current to both visited and output
        for (v : current.allNeighbors()):
            indegrees[v] -= 1
    return output
def getNextVertex(indegrees, visited):
    for (node, num : indegrees):
        if (num == 0 and node not in visited):
            return node
```


Questions:

Worst-case runtime?
$\mathcal{O}\left(|V|^{2}+|E|\right)$

Is this optimal?
Maybe not. Do we really need to look at each node multiple times? Can
we somehow get
$\mathcal{O}(|V|+|E|) ?$

Topological sort: Algorithm

```
def toposort(graph):
    indegrees = new HashMap<Vertex, Integer>()
    visited = new HashSet<Vertex>()
    output = new AnyList<Vertex>()
    compute all indegrees and add to dictionary
    while (we still need to visit vertices):
        current = getNextVertex(indegrees, visited)
        add current to both visited and output
        for (v : current.allNeighbors()):
            indegrees[v] -= 1
    return output
def getNextVertex(indegrees, visited):
    for (node, num : indegrees):
        if (num == 0 and node not in visited):
            return node
```

How can we improve this?

Topological sort: Algorithm

```
def toposort(graph):
    indegrees = new HashMap<Vertex, Integer>()
    visited = new HashSet<Vertex>()
    output = new AnyList<Vertex>()
    compute all indegrees and add to dictionary
    while (we still need to visit vertices):
        current = getNextVertex(indegrees, visited)
        add current to both visited and output
        for (v : current.allNeighbors()):
        indegrees[v] -= 1
    return output
def getNextVertex(indegrees, visited):
    for (node, num : indegrees):
        if (num == 0 and node not in visited):
            return node
```

How can we improve this?

- Can we get rid of the inner loop somehow?
- Would using different/more data structures help?
- Can we collect additional information somewhere else?

Topological sort: Algorithm 2

Insight: When we're updating the indegrees, we already know which nodes now have an indegree of zero!

Topological sort: Algorithm 2

Insight: When we're updating the indegrees, we already know which nodes now have an indegree of zero!

Why are we discarding and recomputing that info? Let's just use it!

Topological sort: Algorithm 2

Insight: When we're updating the indegrees, we already know
which nodes now have an indegree of zero!
Why are we discarding and recomputing that info? Let's just use it!

```
def toposort(graph):
    indegrees = new HashMap<Vertex, Integer>()
    visited = new HashSet<Vertex>()
    output = new AnyList<Vertex>()
    stack = new Stack<Vertex>();
    compute all indegrees and add to dictionary
    while (we still need to visit vertices):
        current = stack.pop()
        add current to both visited and output
        for (v : current.allNeighbors()):
        indegrees[v] -= 1
        if (indegrees[v] == 0):
            stack.push(v)
```

 return output

Topological sort: Algorithm 2

```
def toposort(graph):
    indegrees = new HashMap<Vertex, Integer>()
    visited = new HashSet<Vertex>()
    output = new AnyList<Vertex>()
    stack = new Stack<Vertex>();
    compute all indegrees and add to dictionary
    while (we still need to visit vertices):
        current = stack.pop()
        add current to both visited and output
        for (v : current.allNeighbors()):
        indegrees[v] -= 1
        if (indegrees[v] == 0):
            stack.push(v)
    return output
```


Topological sort: Algorithm 2

```
def toposort(graph):
    indegrees = new HashMap<Vertex, Integer>()
    visited = new HashSet<Vertex>()
    output = new AnyList<Vertex>()
    stack = new Stack<Vertex>();
    compute all indegrees and add to dictionary
    while (we still need to visit vertices):
        current = stack.pop()
        add current to both visited and output
        for (v : current.allNeighbors()):
        indegrees[v] -= 1
        if (indegrees[v] == 0):
            stack.push(v)
    return output
```

Question: Does this actually work?

Topological sort: Algorithm 2

```
def toposort(graph):
    indegrees = new HashMap<Vertex, Integer>()
    visited = new HashSet<Vertex>()
    output = new AnyList<Vertex>()
    stack = new Stack<Vertex>();
    compute all indegrees and add to dictionary
    while (we still need to visit vertices):
        current = stack.pop()
        add current to both visited and output
        for (v : current.allNeighbors()):
        indegrees[v] -= 1
        if (indegrees[v] == 0):
            stack.push(v)
    return output
```

Question: Does this actually work?
Answer: No, there's a bug! The stack is initially empty, so first pop fails.

Topological sort: Algorithm 2

```
def toposort(graph):
    indegrees = new HashMap<Vertex, Integer>()
    visited = new HashSet<Vertex>()
    output = new AnyList<Vertex>()
    stack = new Stack<Vertex>();
compute all indegrees and add to dictionary
also add all nodes with indegree zero to stack
while (we still need to visit vertices):
        current = stack.pop()
        add current to both visited and output
        for (v : current.allNeighbors()):
        indegrees[v] -= 1
        if (indegrees[v] == 0):
            stack.push(v)
return output
```


Topological sort: Algorithm 2

```
def toposort(graph):
    indegrees = new HashMap<Vertex, Integer>()
    visited = new HashSet<Vertex>()
    output = new AnyList<Vertex>()
    stack = new Stack<Vertex>();
    compute all indegrees and add to dictionary
    also add all nodes with indegree zero to stack
    while (we still need to visit vertices):
        current = stack.pop()
        add current to both visited and output
        for (v : current.allNeighbors()):
        indegrees[v] -= 1
        if (indegrees[v] == 0):
            stack.push(v)
return output
```

Question: Can we improve this algorithm even more?

Topological sort: Algorithm 2

```
def toposort(graph):
    indegrees = new HashMap<Vertex, Integer>()
    visited = new HashSet<Vertex>()
    output = new AnyList<Vertex>()
    stack = new Stack<Vertex>();
compute all indegrees and add to dictionary
also add all nodes with indegree zero to stack
while (we still need to visit vertices):
        current = stack.pop()
        add current to both visited and output
        for (v : current.allNeighbors()):
        indegrees[v] -= 1
        if (indegrees[v] == 0):
            stack.push(v)
return output
```

Question: Can we improve this algorithm even more?
Answer: Why do we need the visited set?

Topological sort: Algorithm 2

```
def toposort(graph):
    indegrees = new HashMap<Vertex, Integer>()
    output = new AnyList<Vertex>()
    stack = new Stack<Vertex>();
    compute all indegrees and add to dictionary
    also add all nodes with indegree zero to stack
    while (we still need to visit vertices):
        current = stack.pop()
        add current to output
        for (v : current.allNeighbors()):
        indegrees[v] -= 1
        if (indegrees[v] == 0):
            stack.push(v)
    return output
```


Topological sort: Algorithm 2

```
def toposort(graph):
    indegrees = new HashMap<Vertex, Integer>()
    output = new AnyList<Vertex>()
    stack = new Stack<Vertex>();
    compute all indegrees and add to dictionary
    also add all nodes with indegree zero to stack
    while (we still need to visit vertices):
        current = stack.pop()
        add current to output
        for (v : current.allNeighbors()):
            indegrees[v] -= 1
            if (indegrees[v] == 0):
            stack.push(v)
    return output
```

Question: What's the worst-case runtime now?

Topological sort: Algorithm 2

```
def toposort(graph):
    indegrees = new HashMap<Vertex, Integer>()
    output = new AnyList<Vertex>()
    stack = new Stack<Vertex>();
    compute all indegrees and add to dictionary
    also add all nodes with indegree zero to stack
    while (we still need to visit vertices):
        current = stack.pop()
        add current to output
        for (v : current.allNeighbors()):
        indegrees[v] -= 1
        if (indegrees[v] == 0):
            stack.push(v)
    return output
```

Question: What's the worst-case runtime now?
Answer: $\mathcal{O}(|V|+|E|)$

Minimum spanning trees

And now, for something completely different...

Minimum spanning trees

Punchline: a MST of a graph connects all the vertices together while minimizing the number of edges used (and their weights).

Minimum spanning trees

Given a connected, undirected graph $G=(V, E)$, a minimum spanning tree is a subgraph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ such that...

Minimum spanning trees

Punchline: a MST of a graph connects all the vertices together while minimizing the number of edges used (and their weights).

Minimum spanning trees

Given a connected, undirected graph $G=(V, E)$, a minimum spanning tree is a subgraph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ such that...

- $V=V^{\prime}\left(G^{\prime}\right.$ is spanning $)$

Minimum spanning trees

Punchline: a MST of a graph connects all the vertices together while minimizing the number of edges used (and their weights).

Minimum spanning trees

Given a connected, undirected graph $G=(V, E)$, a minimum spanning tree is a subgraph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ such that...

- $V=V^{\prime}\left(G^{\prime}\right.$ is spanning $)$
- There exists a path from any vertex to any other one

Minimum spanning trees

Punchline: a MST of a graph connects all the vertices together while minimizing the number of edges used (and their weights).

Minimum spanning trees

Given a connected, undirected graph $G=(V, E)$, a minimum spanning tree is a subgraph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ such that...

- $V=V^{\prime}\left(G^{\prime}\right.$ is spanning)
- There exists a path from any vertex to any other one
- The sum of the edge weights in E^{\prime} is minimized.

Minimum spanning trees

Punchline: a MST of a graph connects all the vertices together while minimizing the number of edges used (and their weights).

Minimum spanning trees

Given a connected, undirected graph $G=(V, E)$, a minimum spanning tree is a subgraph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ such that...

- $V=V^{\prime}$ (G^{\prime} is spanning)
- There exists a path from any vertex to any other one
- The sum of the edge weights in E^{\prime} is minimized.

In order for a graph to have a MST, the graph must...

- ...be connected - there is a path from a vertex to any other vertex. (Note: this means $|V| \leq|E|$).
- ...be undirected.

Minimum spanning trees: example

An example of an minimum spanning tree (MST):

Minimum spanning trees: Applications

Example questions:

- We want to connect phone lines to houses, but laying down cable is expensive. How can we minimize the amount of wire we must install?

Minimum spanning trees: Applications

Example questions:

- We want to connect phone lines to houses, but laying down cable is expensive. How can we minimize the amount of wire we must install?
- We have items on a circuit we want to be "electrically equivalent". How can we connect them together using a minimum amount of wire?

Minimum spanning trees: Applications

Example questions:

- We want to connect phone lines to houses, but laying down cable is expensive. How can we minimize the amount of wire we must install?
- We have items on a circuit we want to be "electrically equivalent". How can we connect them together using a minimum amount of wire?

Other applications:

Minimum spanning trees: Applications

Example questions:

- We want to connect phone lines to houses, but laying down cable is expensive. How can we minimize the amount of wire we must install?
- We have items on a circuit we want to be "electrically equivalent". How can we connect them together using a minimum amount of wire?

Other applications:

- Implement efficient multiple constant multiplication
- Minimizing number of packets transmitted across a network
- Machine learning (e.g. real-time face verification)
- Graphics (e.g. image segmentation)

Minimum spanning trees: properties

Some questions...

- Can a valid MST contain a cycle?
- If we take a valid MST and remove an edge, is it still an MST?
- If we take a valid MST and add an edge, is it still an MST?
- If there are V vertices, how many edges are contained in the minimum spanning tree?

Minimum spanning trees: properties

Some questions...

- Can a valid MST contain a cycle?

Answer: no. If there's a cycle, we can always remove one edge to break the cycle while still leaving all nodes connected.

- If we take a valid MST and remove an edge, is it still an MST? Answer: No. If we're already using the fewest edges possible, removing an edge would make the nodes no longer connected.
- If we take a valid MST and add an edge, is it still an MST? Answer: No. Since all the edges are already connected, this would introduce a cycle.
- If there are V vertices, how many edges are contained in the minimum spanning tree?
Answer: $|V|-1$

Minimum spanning trees: algorithm

Design question: how would you implement an algorithm to find the MST of some graph, assuming the edges all have the same weight?

Minimum spanning trees: algorithm

Design question: how would you implement an algorithm to find the MST of some graph, assuming the edges all have the same weight?

One idea: run DFS, and keep all the edges that don't connect back to an already-visited vertex.

Another idea: iterate through the edges, and add an edge as long as it doesn't introduce a cycle.

Minimum spanning tree: coming up next

Next time:

How do we account for edge weights?

- Prim's algorithm: Traverse through graph, and add nodes

Minimum spanning tree: coming up next

Next time:

How do we account for edge weights?

- Prim's algorithm: Traverse through graph, and add nodes
- Kruskal's algorithm: Iterate through edges, and add edges

Minimum spanning tree: coming up next

Next time:

How do we account for edge weights?

- Prim's algorithm: Traverse through graph, and add nodes
- Kruskal's algorithm: Iterate through edges, and add edges

In both cases, we avoid adding nodes/edges that introduce a cycle, and need to figure out how to pick the "best" node or edge.

