
CSE 373: Topological Sort and Minimum
Spanning Trees

Michael Lee
Friday, Feb 23, 2018

1

Topological sort

Design question: suppose we have a bunch of classes with
pre-requisites.

CSE142
CSE143

MATH 126

CSE373

CSE374

CSE410

CSE413

CSE415

CSE417

XYZ

Goal: list out classes in a “valid” order

For example: 126, 142, 143, 374, 373, 417, 410, 413, XYZ, 415
2

Topological sort

Topological sort
Given a directed, acyclic graph (DAG), running topological sort
on that graph will produce a list of all the vertices in an order
such that no vertex appears before another vertex that has an
edge to it.

Example applications:

I Any scheduling problem (scheduling courses, scheduling
threads)

I Computing order to recompute cells in spreadsheet
I Determining order to compile files using a MAkefile

In general: taking a dependency graph and coming up with order
of execution.

3

Topological sort

Questions

I Can we perform topo-sort on graphs containing cycles?
No: how do we decide which node comes first?

I Is there always one unique output per graph?
No: see example on inked slides

4

Topological sort: algorithm

Intuition:

I The only nodes we can start with are also nodes that have
in-degree 0

I So, start by adding those to the list
I Is there some way of “repeating” this process?

5

Topological sort

Setup

I Look at each vertex and record its in-degree somewhere

Core loop

I Choose an arbitrary vertex a with in-degree 0
I Output a and conceptually remove it from the graph
I For each vertex b adjacent to a, decrement the in-degree of b
I Repeat

6



Topological sort: Example 1

Example again:

CSE142: 0
CSE143: 210

MATH126: 0

CSE373: 10

CSE374: 10

CSE413: 10

CSE410: 10

CSE417: 10

CSE415: 10

XYZ: 3210

;

Output: CSE142, MATH126, CSE143, CSE374, CSE373, CSE413,
CSE410, XYZ, CSE417, CSE415

7

Topological sort: Example 2

Now you try. List one possible output:

a
b

c

d

e

g h

f

i

j
k

One possible answer: a, b, g, c, e, h, d, i, f, j, k

8

Topological sort: Algorithm

Our algorithm so far:

Setup

I Look at each vertex and record its in-degree somewhere

Core loop

I Choose an arbitrary vertex a with in-degree 0
I Output a and conceptually remove it from the graph
I For each vertex b adjacent to a, decrement the in-degree of b
I Repeat

9

Topological sort: Algorithm

One possible implementation:

def toposort(graph):

indegrees = new HashMap<Vertex, Integer>()

visited = new HashSet<Vertex>()

output = new AnyList<Vertex>()

compute all indegrees and add to dictionary

while (we still need to visit vertices):

current = getNextVertex(indegrees, visited)

add current to both visited and output

for (v : current.allNeighbors()):

indegrees[v] -= 1

return output

def getNextVertex(indegrees, visited):

for (node, num : indegrees):

if (num == 0 and node not in visited):

return node

Questions:
Worst-case runtime?

O
(
|V |2 + |E |

)
Is this optimal?

Maybe not. Do
we really need to
look at each node
multiple times? Can
we somehow get
O (|V |+ |E |)?

10

Topological sort: Algorithm

def toposort(graph):

indegrees = new HashMap<Vertex, Integer>()

visited = new HashSet<Vertex>()

output = new AnyList<Vertex>()

compute all indegrees and add to dictionary

while (we still need to visit vertices):

current = getNextVertex(indegrees, visited)

add current to both visited and output

for (v : current.allNeighbors()):

indegrees[v] -= 1

return output

def getNextVertex(indegrees, visited):

for (node, num : indegrees):

if (num == 0 and node not in visited):

return node

How can we improve this?
I Can we get rid of the inner loop somehow?
I Would using different/more data structures help?
I Can we collect additional information somewhere else? 11

Topological sort: Algorithm 2

Insight: When we’re updating the indegrees, we already know
which nodes now have an indegree of zero!

Why are we discarding and recomputing that info? Let’s just use it!
def toposort(graph):

indegrees = new HashMap<Vertex, Integer>()

visited = new HashSet<Vertex>()

output = new AnyList<Vertex>()

stack = new Stack<Vertex>();

compute all indegrees and add to dictionary

while (we still need to visit vertices):

current = stack.pop()

add current to both visited and output

for (v : current.allNeighbors()):

indegrees[v] -= 1

if (indegrees[v] == 0):

stack.push(v)

return output
12



Topological sort: Algorithm 2

def toposort(graph):

indegrees = new HashMap<Vertex, Integer>()

visited = new HashSet<Vertex>()

output = new AnyList<Vertex>()

stack = new Stack<Vertex>();

compute all indegrees and add to dictionary

while (we still need to visit vertices):

current = stack.pop()

add current to both visited and output

for (v : current.allNeighbors()):

indegrees[v] -= 1

if (indegrees[v] == 0):

stack.push(v)

return output

Question: Does this actually work?

Answer: No, there’s a bug! The stack is initially empty, so first
pop fails. 13

Topological sort: Algorithm 2

def toposort(graph):

indegrees = new HashMap<Vertex, Integer>()

visited = new HashSet<Vertex>()

output = new AnyList<Vertex>()

stack = new Stack<Vertex>();

compute all indegrees and add to dictionary

also add all nodes with indegree zero to stack

while (we still need to visit vertices):

current = stack.pop()

add current to both visited and output

for (v : current.allNeighbors()):

indegrees[v] -= 1

if (indegrees[v] == 0):

stack.push(v)

return output

Question: Can we improve this algorithm even more?

Answer: Why do we need the visited set?
14

Topological sort: Algorithm 2

def toposort(graph):

indegrees = new HashMap<Vertex, Integer>()

output = new AnyList<Vertex>()

stack = new Stack<Vertex>();

compute all indegrees and add to dictionary

also add all nodes with indegree zero to stack

while (we still need to visit vertices):

current = stack.pop()

add current to output

for (v : current.allNeighbors()):

indegrees[v] -= 1

if (indegrees[v] == 0):

stack.push(v)

return output

Question: What’s the worst-case runtime now?

Answer: O (|V |+ |E |)

15

Minimum spanning trees

And now, for something completely different...

16

Minimum spanning trees

Punchline: a MST of a graph connects all the vertices together
while minimizing the number of edges used (and their weights).
Minimum spanning trees
Given a connected, undirected graph G = (V ,E), a minimum
spanning tree is a subgraph G ′ = (V ′,E ′) such that...

I V = V ′ (G ′ is spanning)
I There exists a path from any vertex to any other one
I The sum of the edge weights in E ′ is minimized.

In order for a graph to have a MST, the graph must...

I ...be connected – there is a path from a vertex to any other
vertex. (Note: this means |V | ≤ |E |).

I ...be undirected. 17

Minimum spanning trees: example

An example of an minimum spanning tree (MST):

a

b c d

e

fgh

i

4

8

8

11

7

4

2 9

14

10

21

67

18



Minimum spanning trees: Applications

Example questions:

I We want to connect phone lines to houses, but laying down
cable is expensive. How can we minimize the amount of wire
we must install?

I We have items on a circuit we want to be “electrically
equivalent”. How can we connect them together using a
minimum amount of wire?

Other applications:

I Implement efficient multiple constant multiplication
I Minimizing number of packets transmitted across a network
I Machine learning (e.g. real-time face verification)
I Graphics (e.g. image segmentation)

19

Minimum spanning trees: properties

Some questions...

I Can a valid MST contain a cycle?
Answer: no. If there’s a cycle, we can always remove one edge
to break the cycle while still leaving all nodes connected.

I If we take a valid MST and remove an edge, is it still an MST?
Answer: No. If we’re already using the fewest edges possible,
removing an edge would make the nodes no longer connected.

I If we take a valid MST and add an edge, is it still an MST?
Answer: No. Since all the edges are already connected, this
would introduce a cycle.

I If there are V vertices, how many edges are contained in the
minimum spanning tree?
Answer: |V | − 1 20

Minimum spanning trees: algorithm

Design question: how would you implement an algorithm to find
the MST of some graph, assuming the edges all have the same
weight?

One idea: run DFS, and keep all the edges that don’t connect
back to an already-visited vertex.

Another idea: iterate through the edges, and add an edge as long
as it doesn’t introduce a cycle.

21

Minimum spanning tree: coming up next

Next time:

How do we account for edge weights?

I Prim’s algorithm: Traverse through graph, and add nodes
I Kruskal’s algorithm: Iterate through edges, and add edges

In both cases, we avoid adding nodes/edges that introduce a cycle,
and need to figure out how to pick the “best” node or edge.

22


