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Dijkstra’s algorithm

Initialization:

1. Assign each node an initial cost of ∞
2. Set our starting node’s cost to 0

Core loop:

1. Get the next (unvisited) node that has the smallest cost
2. Update all adjacent vertices (if applicable)
3. Mark current node as “visited”

Idea: Greedily pick node with smallest cost, then update
everything possible. Repeat.
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Dijkstra’s algorithm

Metaphor: Treat edges as canals and edge weights as distance.
Imagine opening a dam at the starting node. How long does it
take for the water to reach each vertex?

Caveat: Dijkstra’s algorithm only guaranteed to work for graphs
with no negative edge weights.

Pronunciation: DYKE-struh (“dijk” rhymes with “bike”)

3

Dijkstra’s algorithm

Suppose we start at vertex “a”:
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And we’re done! Now, to find the shortest path, from a to a node,
start at the end, trace the red arrows backwards, and reverse the
list.
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We initially assign all nodes a cost of infinity.

And we’re done!
Now, to find the shortest path, from a to a node, start at the end,
trace the red arrows backwards, and reverse the list.
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Next, assign the starting node a cost of 0.

And we’re done! Now,
to find the shortest path, from a to a node, start at the end, trace
the red arrows backwards, and reverse the list.
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Next, update all adjacent node costs as well as the backpointers.

And we’re done! Now, to find the shortest path, from a to a node,
start at the end, trace the red arrows backwards, and reverse the
list.
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The pending node with the smallest cost is c, so we visit that next.

And we’re done! Now, to find the shortest path, from a to a node,
start at the end, trace the red arrows backwards, and reverse the
list.
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Suppose we start at vertex “a”:
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We consider all adjacent nodes. a is fixed, so we only need to
update e. Note the new cost of e is the sum of the weights for
a − c and c − e.

And we’re done! Now, to find the shortest path,
from a to a node, start at the end, trace the red arrows backwards,
and reverse the list.
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b is the next pending node with smallest cost.

And we’re done!
Now, to find the shortest path, from a to a node, start at the end,
trace the red arrows backwards, and reverse the list.
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The adjacent nodes are c, e, and f . The only node where we can
update the cost is f . Note the route a − b − e has the same cost as
a − c − e, so there’s no point in updating the backpointer to e.

And
we’re done! Now, to find the shortest path, from a to a node, start
at the end, trace the red arrows backwards, and reverse the list.
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Both d and f have the same cost, so let’s (arbitrarily) pick d next.
Note that we can’t adjust any of our neighbors.

And we’re done!
Now, to find the shortest path, from a to a node, start at the end,
trace the red arrows backwards, and reverse the list.
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Next up is f .

And we’re done! Now, to find the shortest path, from
a to a node, start at the end, trace the red arrows backwards, and
reverse the list.
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The only neighbor we is h.

And we’re done! Now, to find the
shortest path, from a to a node, start at the end, trace the red
arrows backwards, and reverse the list.
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h has the smallest cost now.

And we’re done! Now, to find the
shortest path, from a to a node, start at the end, trace the red
arrows backwards, and reverse the list.
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Suppose we start at vertex “a”:
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We update g .

And we’re done! Now, to find the shortest path,
from a to a node, start at the end, trace the red arrows backwards,
and reverse the list.
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Next up is g .

And we’re done! Now, to find the shortest path, from
a to a node, start at the end, trace the red arrows backwards, and
reverse the list.
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The two adjacent nodes are f and e. f is fixed so we leave it
alone. We however will update e: our current route is cheaper
then the previous route, so we update both the cost and the
backpointer.

And we’re done! Now, to find the shortest path, from
a to a node, start at the end, trace the red arrows backwards, and
reverse the list.
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Suppose we start at vertex “a”:
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The last pending node is e. We visit it, and check for any unfixed
adjacent nodes (there are none).

And we’re done! Now, to find the
shortest path, from a to a node, start at the end, trace the red
arrows backwards, and reverse the list.
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Suppose we start at vertex “a”:
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And we’re done! Now, to find the shortest path, from a to a node,
start at the end, trace the red arrows backwards, and reverse the
list. 4

Dijkstra’s algorithm

Core idea in simplified pseudocode:

def dijkstra(start):

for (v : vertices):

set cost(v) to infinity

set cost(start) to 0

while (we still have unvisited nodes):

current = get next smallest node

for (edge : current.getOutEdges()):

newCost = min(cost(current) + edge.cost, cost(edge.dest))

update cost(edge.dest) to newCost, update backpointers, etc

return backpointers dictionary
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Dijkstra’s algorithm

One implementation: inserting extra values into heap
def dijkstra(start):

backpointers = empty Dictionary of vertex to vertex

costs = Dictionary of vertex to double, initialized to infinity

visited = empty Set

heap = new Heap<Node with cost>();

heap.put([start, 0])

cost.put(start, 0)

while (heap is not empty):

current, currentCost = heap.removeMin()

skip if visited.contains(current), else visited.add(current)

for (edge : current.getOutEdges()):

skip if visited.contains(edge.dest), else visited.add(edge.dest)

if (newCost < cost.get(edge.dest)):

cost.put(edge.dest, newCost)

heap.insert([edge.dest, newCost])

backpointers.put(edge.dest, current)

return backpointers dictionary
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Dijkstra’s algorithm

Another impl: after implementing decreasePriority
def dijkstra(start):

backpointers = empty Dictionary of vertex to vertex

costs = empty Dictionary of vertex to double

heap = new Heap<Node with cost>();

for (v : vertices):

heap.put([v, infinity])

costs.put(v, infinity)

heap.decreasePriority([start, 0])

costs.put(start, 0)

while (heap is not empty):

current, currentCost = heap.removeMin()

for (edge : current.getOutEdges()):

newCost = currentCost + edge.cost

if (newCost < cost.get(edge.dest)):

cost.put(edge.dest, newCost)

heap.decreaseKey([edge.dest, newCost])

backpointers.put(edge.dest, current)

return backpointers dictionary
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Example

What does Dijkstra’s algorithm do when run on vertex a?
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Example

What does Dijkstra’s algorithm do when run on vertex a?
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Misc announcements

I Project 1, part 2 regrades will be released later tonight
I Project 3, part 1 grades also released later tonight

Reminder: if you fix the errors in your Friday submission, you
can get up to half credit back.

I If you’ve emailed me, and you haven’t heard back, email me
again
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Dijkstra’s: why does it work?

Rough intuition:

I Suppose a is the next unvisited node with the smallest cost.
Suppose b is some unvisited vertex adjacent to a.

I The quickest path from the start to b is going to be through
a. Any other route would be a longer detour (assuming edges
are positive!).

I So, picking the shortest node will always accurately update
the adjacent nodes.

(Full proof beyond scope of class)
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Dijkstra’s: negative edges

What if we have negative edges?

Question: What’s the shortest path from s to t according to
Dijkstra’s? In reality?
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Dijkstra’s: negative edges

What’s the shortest path now?
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Dijkstra’s: negative edges

Punchline:

I If there are negative edges, Dijkstra’s doesn’t work
(There exist other algorithms that can handle negative edges
– e.g. see Bellman-Ford.)

I If there are negative cycles, nothing works

(Where do negative edges show up? Examples: modeling credit
and debit, modeling flow of energy, etc.)
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Dijkstra’s algorithm: analyzing runtime

Question: what is the worst-case runtime of Dijkstra’s algorithm?

Strategy 1: Analyze the code, like we’ve been doing all quarter

Strategy 2: Analyze the algorithm more holistically, like we did for
DFS and BFS
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Dijkstra’s algorithm: analyzing runtime via code

Consider this (simplified) pseudocode. How do we analyze?

def dijkstra(start):

for (v : vertices):

set cost(v) to infinity

set cost(start) to 0

while (we still have unvisited nodes):

current = get next smallest node

for (edge : current.getOutEdges()):

newCost = min(cost(current) + edge.cost, cost(edge.dest))

update cost(edge.dest) to newCost, update backpointers, etc

return backpointers dictionary

(Note: let ts be the time needed to get the next smallest node,
and let tu be the time needed to update vertex costs. We’ll treat
these as unknowns for now.)
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Dijkstra’s algorithm: analyzing runtime via code

Things we know:

I Initialization takes O (|V |) time
I The while loop repeats |V | times
I The inner foreach loop repeats |E | times (???)?
I The inner foreach loop does O (tu) work per eiteration
I So while loop does O (ts + |E |·tu) work per iteration

Final runtime:
O (|V |+ |V |·(ts + |E |·tu))

Distribute:
O (|V |+ |V |·ts + |V |·|E |·tu)

The lone |V | is dominated by |V |·ts :

O (|V |·ts + |V |·|E |·tu) 16

Dijkstra’s algorithm: analyzing runtime

Our runtime:
O (|V |·ts + |V |·|E |·tu)

Question:

Do we really need to update vertex costs |V |·|E | times?

while (we still have unvisited nodes):

current = get next smallest node

for (edge : current.getOutEdges()):

newCost = min(cost(current) + edge.cost, cost(edge.dest))

update cost(edge.dest) to newCost, update backpointers, etc
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Dijkstra’s algorithm: analyzing runtime

while (we still have unvisited nodes):

current = get next smallest node

for (edge : current.getOutEdges()):

newCost = min(cost(current) + edge.cost, cost(edge.dest))

update cost(edge.dest) to newCost, update backpointers, etc

Observations about the foreach loop:

I We don’t know how many times it runs per each iteration
I ...but we do know num times it runs across all iterations!

Original bound:
O (|V |·ts + |V |·|E |·tu)

We update at most once per edge – so, a tighter bound:

O (|V |·ts + |E |·tu)
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Dijkstra’s algorithm: finding and updating nodes

Our runtime so far:

O (|V |·ts + |E |·tu)

Question: So, what exactly is ts and tu?

Answer: Depends on how we store nodes and costs!
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Dijkstra’s algorithm: finding and updating nodes

Observation: there are two operations we care about: finding the
node with the min cost, and given a node, updating its cost

Ideas:

I Use a binary heaps: lets us find a node with min cost easily
I Use a dictionary: lets us update the value corresponding to a

node easily
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Dijkstra’s algorithm: finding and updating nodes

Exercise: fill out this table

Data structure Remove min (ts) Update cost (tu)

Hash map O (|V |) O (|1|)

Sorted array O (1) O (|V |)

AVL tree O (log(|V |)) O (log(|V |))

Binary heap O (log(|V |)) O (|V |)

The AVL version looks actually pretty reasonable
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Dijkstra’s algorithm: finding and updating nodes

Another common approach: modify binary heaps so they can
update the cost in O (log(n)) time (a “hybrid” binary heap):

I Two fields: the same heap internal array, and a hash table
mapping vertices to their index in the array.

I Assumptions: each vertex is unique; we only decrease the cost
I Implementing removeMin:

Run the standard removeMin heap algorithm. As we swap
nodes, add some extra code to keep the hash map up-to-date.
This is still O (log(n)).

I Implementing updateCost:
Use the hash map to get the index of the given node. Run
percolateUp, updating the hash map as we go.
This is still O (log(n)).

22

Dijkstra’s algorithm: finding and updating nodes

Data structure removeMin (ts) updateCost (tu)

Hash map O (|V |) O (|1|)

Sorted array O (1) O (|V |)

AVL tree O (log(|V |)) O (log(|V |))

Binary heap O (log(|V |)) O (|V |)

“Hybrid” binary heap O (log(|V |)) O (log(|V |))

Fibonacci heaps O (log(|V |)) O (1)

Note: Fibonacci heaps are beyond the scope of this class
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Dijkstra’s algorithm: finding and updating nodes

Observation: Gosh, this all sounds exhausting

What if we replace the binary heap’s call to updateCost with
insert and just allow duplicates?

Runtime is now O ((|V |+ |E |) log(|V |+ |E |)) – the analysis is left
as an exercise to the reader.

So, less efficient, but easiest to implement.
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