
CSE 373: More on Dijkstra’s algorithm

Michael Lee
Wednesday, Feb 21, 2018

1

Dijkstra’s algorithm

Initialization:

1. Assign each node an initial cost of ∞
2. Set our starting node’s cost to 0

Core loop:

1. Get the next (unvisited) node that has the smallest cost
2. Update all adjacent vertices (if applicable)
3. Mark current node as “visited”

Idea: Greedily pick node with smallest cost, then update
everything possible. Repeat.

2

Dijkstra’s algorithm

Metaphor: Treat edges as canals and edge weights as distance.
Imagine opening a dam at the starting node. How long does it
take for the water to reach each vertex?

Caveat: Dijkstra’s algorithm only guaranteed to work for graphs
with no negative edge weights.

Pronunciation: DYKE-struh (“dijk” rhymes with “bike”)

3

Dijkstra’s algorithm

Suppose we start at vertex “a”:

a b f h

d c e g

2

1
4 5

10

2

9
112

7

1

3

2

3

1

And we’re done! Now, to find the shortest path, from a to a node,
start at the end, trace the red arrows backwards, and reverse the
list.

4

Dijkstra’s algorithm

Suppose we start at vertex “a”:

a
∞

b
∞

f
∞

h
∞

d
∞

c
∞

e
∞

g
∞

2

1
4 5

10

2

9
112

7

1

3

2

3

1

We initially assign all nodes a cost of infinity.

And we’re done!
Now, to find the shortest path, from a to a node, start at the end,
trace the red arrows backwards, and reverse the list.

4

Dijkstra’s algorithm

Suppose we start at vertex “a”:

a
0

b
∞

f
∞

h
∞

d
∞

c
∞

e
∞

g
∞

2

1
4 5

10

2

9
112

7

1

3

2

3

1

Next, assign the starting node a cost of 0.

And we’re done! Now,
to find the shortest path, from a to a node, start at the end, trace
the red arrows backwards, and reverse the list.

4

Dijkstra’s algorithm

Suppose we start at vertex “a”:

a
0

b
2

f
∞

h
∞

d
4

c
1

e
∞

g
∞

2

1
4 5

10

2

9
112

7

1

3

2

3

1

Next, update all adjacent node costs as well as the backpointers.

And we’re done! Now, to find the shortest path, from a to a node,
start at the end, trace the red arrows backwards, and reverse the
list.

4

Dijkstra’s algorithm

Suppose we start at vertex “a”:

a
0

b
2

f
∞

h
∞

d
4

c
1

e
∞

g
∞

2

1
4 5 10

2

9
112

7

1

3

2

3

1

The pending node with the smallest cost is c, so we visit that next.

And we’re done! Now, to find the shortest path, from a to a node,
start at the end, trace the red arrows backwards, and reverse the
list.

4

Dijkstra’s algorithm

Suppose we start at vertex “a”:

a
0

b
2

f
∞

h
∞

d
4

c
1

e
12

g
∞

2

1
4 5 10

2

9
112

7

1

3

2

3

1

We consider all adjacent nodes. a is fixed, so we only need to
update e. Note the new cost of e is the sum of the weights for
a − c and c − e.

And we’re done! Now, to find the shortest path,
from a to a node, start at the end, trace the red arrows backwards,
and reverse the list.

4

Dijkstra’s algorithm

Suppose we start at vertex “a”:

a
0

b
2

f
∞

h
∞

d
4

c
1

e
12

g
∞

2

1
4 5

10

2

9
112

7

1

3

2

3

1

b is the next pending node with smallest cost.

And we’re done!
Now, to find the shortest path, from a to a node, start at the end,
trace the red arrows backwards, and reverse the list.

4

Dijkstra’s algorithm

Suppose we start at vertex “a”:

a
0

b
2

f
4

h
∞

d
4

c
1

e
12

g
∞

2

1
4 5

10

2

9
112

7

1

3

2

3

1

The adjacent nodes are c, e, and f . The only node where we can
update the cost is f . Note the route a − b − e has the same cost as
a − c − e, so there’s no point in updating the backpointer to e.

And
we’re done! Now, to find the shortest path, from a to a node, start
at the end, trace the red arrows backwards, and reverse the list.

4

Dijkstra’s algorithm

Suppose we start at vertex “a”:

a
0

b
2

f
4

h
∞

d
4

c
1

e
12

g
∞

2

1
4 5

10

2

9
112

7

1

3

2

3

1

Both d and f have the same cost, so let’s (arbitrarily) pick d next.
Note that we can’t adjust any of our neighbors.

And we’re done!
Now, to find the shortest path, from a to a node, start at the end,
trace the red arrows backwards, and reverse the list.

4

Dijkstra’s algorithm

Suppose we start at vertex “a”:

a
0

b
2

f
4

h
∞

d
4

c
1

e
12

g
∞

2

1
4 5

10

2

9
112

7

1

3

2

3

1

Next up is f .

And we’re done! Now, to find the shortest path, from
a to a node, start at the end, trace the red arrows backwards, and
reverse the list.

4

Dijkstra’s algorithm

Suppose we start at vertex “a”:

a
0

b
2

f
4

h
7

d
4

c
1

e
12

g
∞

2

1
4 5

10

2

9
112

7

1

3

2

3

1

The only neighbor we is h.

And we’re done! Now, to find the
shortest path, from a to a node, start at the end, trace the red
arrows backwards, and reverse the list.

4

Dijkstra’s algorithm

Suppose we start at vertex “a”:

a
0

b
2

f
4

h
7

d
4

c
1

e
12

g
∞

2

1
4 5

10

2

9
112

7

1

3

2

3

1

h has the smallest cost now.

And we’re done! Now, to find the
shortest path, from a to a node, start at the end, trace the red
arrows backwards, and reverse the list.

4

Dijkstra’s algorithm

Suppose we start at vertex “a”:

a
0

b
2

f
4

h
7

d
4

c
1

e
12

g
8

2

1
4 5

10

2

9
112

7

1

3

2

3

1

We update g .

And we’re done! Now, to find the shortest path,
from a to a node, start at the end, trace the red arrows backwards,
and reverse the list.

4

Dijkstra’s algorithm

Suppose we start at vertex “a”:

a
0

b
2

f
4

h
7

d
4

c
1

e
12

g
8

2

1
4 5

10

2

9
112

7

1

3

2

3

1

Next up is g .

And we’re done! Now, to find the shortest path, from
a to a node, start at the end, trace the red arrows backwards, and
reverse the list.

4

Dijkstra’s algorithm

Suppose we start at vertex “a”:

a
0

b
2

f
4

h
7

d
4

c
1

e
11

g
8

2

1
4 5

10

2

9
112

7

1

3

2

3

1

The two adjacent nodes are f and e. f is fixed so we leave it
alone. We however will update e: our current route is cheaper
then the previous route, so we update both the cost and the
backpointer.

And we’re done! Now, to find the shortest path, from
a to a node, start at the end, trace the red arrows backwards, and
reverse the list.

4

Dijkstra’s algorithm

Suppose we start at vertex “a”:

a
0

b
2

f
4

h
7

d
4

c
1

e
11

g
8

2

1
4 5

10

2

9
112

7

1

3

2

3

1

The last pending node is e. We visit it, and check for any unfixed
adjacent nodes (there are none).

And we’re done! Now, to find the
shortest path, from a to a node, start at the end, trace the red
arrows backwards, and reverse the list.

4

Dijkstra’s algorithm

Suppose we start at vertex “a”:

a
0

b
2

f
4

h
7

d
4

c
1

e
11

g
8

2

1
4 5

10

2

9
112

7

1

3

2

3

1

And we’re done! Now, to find the shortest path, from a to a node,
start at the end, trace the red arrows backwards, and reverse the
list. 4

Dijkstra’s algorithm

Core idea in simplified pseudocode:

def dijkstra(start):

for (v : vertices):

set cost(v) to infinity

set cost(start) to 0

while (we still have unvisited nodes):

current = get next smallest node

for (edge : current.getOutEdges()):

newCost = min(cost(current) + edge.cost, cost(edge.dest))

update cost(edge.dest) to newCost, update backpointers, etc

return backpointers dictionary

5

Dijkstra’s algorithm

One implementation: inserting extra values into heap
def dijkstra(start):

backpointers = empty Dictionary of vertex to vertex

costs = Dictionary of vertex to double, initialized to infinity

visited = empty Set

heap = new Heap<Node with cost>();

heap.put([start, 0])

cost.put(start, 0)

while (heap is not empty):

current, currentCost = heap.removeMin()

skip if visited.contains(current), else visited.add(current)

for (edge : current.getOutEdges()):

skip if visited.contains(edge.dest), else visited.add(edge.dest)

if (newCost < cost.get(edge.dest)):

cost.put(edge.dest, newCost)

heap.insert([edge.dest, newCost])

backpointers.put(edge.dest, current)

return backpointers dictionary
6

Dijkstra’s algorithm

Another impl: after implementing decreasePriority
def dijkstra(start):

backpointers = empty Dictionary of vertex to vertex

costs = empty Dictionary of vertex to double

heap = new Heap<Node with cost>();

for (v : vertices):

heap.put([v, infinity])

costs.put(v, infinity)

heap.decreasePriority([start, 0])

costs.put(start, 0)

while (heap is not empty):

current, currentCost = heap.removeMin()

for (edge : current.getOutEdges()):

newCost = currentCost + edge.cost

if (newCost < cost.get(edge.dest)):

cost.put(edge.dest, newCost)

heap.decreaseKey([edge.dest, newCost])

backpointers.put(edge.dest, current)

return backpointers dictionary

7

Example

What does Dijkstra’s algorithm do when run on vertex a?

a b c d e

z

1 1 1 1

90 80 70 60 50

8

Example

What does Dijkstra’s algorithm do when run on vertex a?

a
0

b
∞

c
∞

d
∞

e
∞

z
∞

1 1 1 1

90 80 70 60 50

8

Example

What does Dijkstra’s algorithm do when run on vertex a?

a
0

b
1

c
∞

d
∞

e
∞

z
90

1 1 1 1

90 80 70 60 50

8

Example

What does Dijkstra’s algorithm do when run on vertex a?

a
0

b
1

c
∞

d
∞

e
∞

z
90

1 1 1 1

90 80 70 60 50

8

Example

What does Dijkstra’s algorithm do when run on vertex a?

a
0

b
1

c
2

d
∞

e
∞

z
81

1 1 1 1

90 80 70 60 50

8

Example

What does Dijkstra’s algorithm do when run on vertex a?

a
0

b
1

c
2

d
∞

e
∞

z
81

1 1 1 1

90 80 70 60 50

8

Example

What does Dijkstra’s algorithm do when run on vertex a?

a
0

b
1

c
2

d
3

e
∞

z
72

1 1 1 1

90 80 70 60 50

8

Example

What does Dijkstra’s algorithm do when run on vertex a?

a
0

b
1

c
2

d
3

e
∞

z
72

1 1 1 1

90 80 70 60 50

8

Example

What does Dijkstra’s algorithm do when run on vertex a?

a
0

b
1

c
2

d
3

e
4

z
63

1 1 1 1

90 80 70 60 50

8

Example

What does Dijkstra’s algorithm do when run on vertex a?

a
0

b
1

c
2

d
3

e
4

z
63

1 1 1 1

90 80 70 60 50

8

Example

What does Dijkstra’s algorithm do when run on vertex a?

a
0

b
1

c
2

d
3

e
4

z
54

1 1 1 1

90 80 70 60 50

8

Example

What does Dijkstra’s algorithm do when run on vertex a?

a
0

b
1

c
2

d
3

e
4

z
54

1 1 1 1

90 80 70 60 50

8

Example

What does Dijkstra’s algorithm do when run on vertex a?

a
0

b
1

c
2

d
3

e
4

z
54

1 1 1 1

90 80 70 60 50

8

Misc announcements

I Project 1, part 2 regrades will be released later tonight
I Project 3, part 1 grades also released later tonight

Reminder: if you fix the errors in your Friday submission, you
can get up to half credit back.

I If you’ve emailed me, and you haven’t heard back, email me
again

9

Dijkstra’s: why does it work?

Rough intuition:

I Suppose a is the next unvisited node with the smallest cost.
Suppose b is some unvisited vertex adjacent to a.

I The quickest path from the start to b is going to be through
a. Any other route would be a longer detour (assuming edges
are positive!).

I So, picking the shortest node will always accurately update
the adjacent nodes.

(Full proof beyond scope of class)

10

Dijkstra’s: negative edges

What if we have negative edges?

Question: What’s the shortest path from s to t according to
Dijkstra’s? In reality?

1

10

-20

s

t

z

11

Dijkstra’s: negative edges

What’s the shortest path now?

5

-1

-1

-1

5
s

a

bc

t

12

Dijkstra’s: negative edges

Punchline:

I If there are negative edges, Dijkstra’s doesn’t work
(There exist other algorithms that can handle negative edges
– e.g. see Bellman-Ford.)

I If there are negative cycles, nothing works

(Where do negative edges show up? Examples: modeling credit
and debit, modeling flow of energy, etc.)

13

Dijkstra’s algorithm: analyzing runtime

Question: what is the worst-case runtime of Dijkstra’s algorithm?

Strategy 1: Analyze the code, like we’ve been doing all quarter

Strategy 2: Analyze the algorithm more holistically, like we did for
DFS and BFS

14

Dijkstra’s algorithm: analyzing runtime via code

Consider this (simplified) pseudocode. How do we analyze?

def dijkstra(start):

for (v : vertices):

set cost(v) to infinity

set cost(start) to 0

while (we still have unvisited nodes):

current = get next smallest node

for (edge : current.getOutEdges()):

newCost = min(cost(current) + edge.cost, cost(edge.dest))

update cost(edge.dest) to newCost, update backpointers, etc

return backpointers dictionary

(Note: let ts be the time needed to get the next smallest node,
and let tu be the time needed to update vertex costs. We’ll treat
these as unknowns for now.)

15

Dijkstra’s algorithm: analyzing runtime via code

Things we know:

I Initialization takes O (|V |) time
I The while loop repeats |V | times
I The inner foreach loop repeats |E | times (???)?
I The inner foreach loop does O (tu) work per eiteration
I So while loop does O (ts + |E |·tu) work per iteration

Final runtime:
O (|V |+ |V |·(ts + |E |·tu))

Distribute:
O (|V |+ |V |·ts + |V |·|E |·tu)

The lone |V | is dominated by |V |·ts :

O (|V |·ts + |V |·|E |·tu) 16

Dijkstra’s algorithm: analyzing runtime

Our runtime:
O (|V |·ts + |V |·|E |·tu)

Question:

Do we really need to update vertex costs |V |·|E | times?

while (we still have unvisited nodes):

current = get next smallest node

for (edge : current.getOutEdges()):

newCost = min(cost(current) + edge.cost, cost(edge.dest))

update cost(edge.dest) to newCost, update backpointers, etc

17

Dijkstra’s algorithm: analyzing runtime

while (we still have unvisited nodes):

current = get next smallest node

for (edge : current.getOutEdges()):

newCost = min(cost(current) + edge.cost, cost(edge.dest))

update cost(edge.dest) to newCost, update backpointers, etc

Observations about the foreach loop:

I We don’t know how many times it runs per each iteration
I ...but we do know num times it runs across all iterations!

Original bound:
O (|V |·ts + |V |·|E |·tu)

We update at most once per edge – so, a tighter bound:

O (|V |·ts + |E |·tu)

18

Dijkstra’s algorithm: finding and updating nodes

Our runtime so far:

O (|V |·ts + |E |·tu)

Question: So, what exactly is ts and tu?

Answer: Depends on how we store nodes and costs!

19

Dijkstra’s algorithm: finding and updating nodes

Observation: there are two operations we care about: finding the
node with the min cost, and given a node, updating its cost

Ideas:

I Use a binary heaps: lets us find a node with min cost easily
I Use a dictionary: lets us update the value corresponding to a

node easily

20

Dijkstra’s algorithm: finding and updating nodes

Exercise: fill out this table

Data structure Remove min (ts) Update cost (tu)

Hash map O (|V |) O (|1|)

Sorted array O (1) O (|V |)

AVL tree O (log(|V |)) O (log(|V |))

Binary heap O (log(|V |)) O (|V |)

The AVL version looks actually pretty reasonable

21

Dijkstra’s algorithm: finding and updating nodes

Another common approach: modify binary heaps so they can
update the cost in O (log(n)) time (a “hybrid” binary heap):

I Two fields: the same heap internal array, and a hash table
mapping vertices to their index in the array.

I Assumptions: each vertex is unique; we only decrease the cost
I Implementing removeMin:

Run the standard removeMin heap algorithm. As we swap
nodes, add some extra code to keep the hash map up-to-date.
This is still O (log(n)).

I Implementing updateCost:
Use the hash map to get the index of the given node. Run
percolateUp, updating the hash map as we go.
This is still O (log(n)).

22

Dijkstra’s algorithm: finding and updating nodes

Data structure removeMin (ts) updateCost (tu)

Hash map O (|V |) O (|1|)

Sorted array O (1) O (|V |)

AVL tree O (log(|V |)) O (log(|V |))

Binary heap O (log(|V |)) O (|V |)

“Hybrid” binary heap O (log(|V |)) O (log(|V |))

Fibonacci heaps O (log(|V |)) O (1)

Note: Fibonacci heaps are beyond the scope of this class

23

Dijkstra’s algorithm: finding and updating nodes

Observation: Gosh, this all sounds exhausting

What if we replace the binary heap’s call to updateCost with
insert and just allow duplicates?

Runtime is now O ((|V |+ |E |) log(|V |+ |E |)) – the analysis is left
as an exercise to the reader.

So, less efficient, but easiest to implement.

24

