Dijkstra's algorithm

Initialization:

1. Assign each node an initial cost of ∞
2. Set our starting node's cost to 0

Core loop:

1. Get the next (unvisited) node that has the smallest cost
2. Update all adjacent vertices (if applicable)
3. Mark current node as "visited"

Idea: Greedily pick node with smallest cost, then update everything possible. Repeat.

Dijkstra's algorithm

Metaphor: Treat edges as canals and edge weights as distance. Imagine opening a dam at the starting node. How long does it take for the water to reach each vertex?

Caveat: Dijkstra's algorithm only guaranteed to work for graphs with no negative edge weights.

Pronunciation: DYKE-struh ("dijk" rhymes with "bike")

Dijkstra's algorithm

Suppose we start at vertex "a":

Dijkstra's algorithm

Suppose we start at vertex " a ":

We initially assign all nodes a cost of infinity.

Dijkstra's algorithm

Suppose we start at vertex "a"

Next, assign the starting node a cost of 0 .

Dijkstra's algorithm
Dijkstra's algorithm
Suppose we start at vertex "a":

The pending node with the smallest cost is c, so we visit that next.

Dijkstra's algorithm

Suppose we start at vertex " a ":

We consider all adjacent nodes. a is fixed, so we only need to update e. Note the new cost of e is the sum of the weights for $a-c$ and $c-e$.

Dijkstra's algorithm

Suppose we start at vertex " a ":

The adjacent nodes are c, e, and f. The only node where we can update the cost is f. Note the route $a-b-e$ has the same cost as $a-c-e$, so there's no point in updating the backpointer to e.

Dijkstra's algorithm

Suppose we start at vertex "a":

Both d and f have the same cost, so let's (arbitrarily) pick d next. Note that we can't adjust any of our neighbors.

Dijkstra's algorithm
Dijkstra's algorithm
Suppose we start at vertex "a":

The only neighbor we is h.

Dijkstra's algorithm

Suppose we start at vertex "a":

We update g .

Dijkstra's algorithm

Suppose we start at vertex "a"

Next up is g.

Dijkstra's algorithm

Suppose we start at vertex "a"

The two adjacent nodes are f and e. f is fixed so we leave it alone. We however will update e : our current route is cheaper then the previous route, so we update both the cost and the backpointer.

Dijkstra's algorithm

Suppose we start at vertex " a ":

The last pending node is e. We visit it, and check for any unfixed adjacent nodes (there are none).

Dijkstra's algorithm

Core idea in simplified pseudocode:

```
def dijkstra(start):
    for (v : vertices):
        set cost(v) ta infinity
    set cost(start) to &
    while (we still have unvisited nodes):
        current - get next smallest node
            for (edge = current-getOutEdges()):
                newCost = min(cost(current) + edge.cost, cost(edge.dest))
                update cost(edge.dest) to newCost, update backpointers, etc
    return backpointers dictionary
```


Dijkstra's algorithm

Another impl: after implementing decreasePriority

```
def dijkstra(start):
    backpointers = empty Dictionary of vertex to vertex
    costs = empty Dictionary of vertex to double
    heap = new Heap<Node with cost>();
    for (v : vertices)
        heap.put([v, infinity])
        costs.put(v, infinity)
    heap.decreasePriority([start, a])
    costs_put(start, 0)
    while (heap is not empty):
    current, currentCost = heap,renoveMin()
        for (edge : current, getOutEdges()):
            nenCost = currentCost + edge.cost
            if (newCost < cost.get(edge.dest))?
                cost.put(edge.dest, nemCost)
                heap.decreasekey([edge.dest, nenCost])
                hackpointers.put(edge.dest, current)
```

 return backpointers dictionary

Dijkstra's algorithm

One implementation: inserting extra values into heap
def dijkstra(start):
backpointers - empty Dictionary of vertex to vertex
costs - Dictionary of vertex to double, initialized to infinity
visited = erpty Set
heap $=$ new Heap-Nade with cost>();
heap. put([start, a])
cost.put(start, 6)
while (heap is not empty):
current, currentCost - heap removellin()
skip if visited.contains(current), else visited.add(current)
for (edge : current. getOutEdges()):
skip if visited.contains(edge.dest), else visited.sdd(edge.dest)
if (nenCost < cost. get(edge dest)):
cost.put(edge. dest, newCost)
heap insert([edge.dest, nenCost])
backpointers.put(edge.dest, current)
return backpointers dictionary

Example

What does Dijkstra's algorithm do when run on vertex a ?

Suppose we start at vertex "a":

And we're done! Now, to find the shortest path, from a to a node, start at the end, trace the red arrows backwards, and reverse the list.

What does Dijkstra's algorithm do when run on vertex a ?

Example

What does Dijkstra's algorithm do when run on vertex a ?

Example

What does Dijkstra's algorithm do when run on vertex a ?

What does Dijkstra's algorithm do when run on vertex a?

Example

What does Dijkstra's algorithm do when run on vertex a ?

Example

What does Dijkstra's algorithm do when run on vertex a?

What does Dijkstra's algorithm do when run on vertex a?

Example

What does Dijkstra's algorithm do when run on vertex a ?

Example

What does Dijkstra's algorithm do when run on vertex a?

- Project 1, part 2 regrades will be released later tonight
- Project 3, part 1 grades also released later tonight Reminder: if you fix the errors in your Friday submission, you can get up to half credit back.
- If you've emailed me, and you haven't heard back, email me again

Rough intuition:

- Suppose a is the next unvisited node with the smallest cost. Suppose b is some unvisited vertex adjacent to a.
- The quickest path from the start to b is going to be through a. Any other route would be a longer detour (assuming edges are positive!).
- So, picking the shortest node will always accurately update the adjacent nodes.
(Full proof beyond scope of class)

Dijkstra's: negative edges

What if we have negative edges?
Question: What's the shortest path from s to t according to Dijkstra's? In reality?

- If there are negative edges, Dijkstra's doesn't work (There exist other algorithms that can handle negative edges - e.g. see Bellman-Ford.)
- If there are negative cycles, nothing works
(Where do negative edges show up? Examples: modeling credit and debit, modeling flow of energy, etc.)

Dijkstra's: negative edges

What's the shortest path now?

Punchline:

Strategy 1: Analyze the code, like we've been doing all quarter
Strategy 2: Analyze the algorithm more holistically, like we did for DFS and BFS

Consider this (simplified) pseudocode. How do we analyze?

```
def dijkstra(start):
    for (v : vertices):
        set cost(v) to infinity
    set cost(start) to e
    while (me still have unvisited nodes):
            current - get next smallest node
            for (edge = current getOutEdges()):
                newCost = min(cost(current) + edge. cost, cost(edge.dest))
                update cost(edge.dest) to newCost, update backpointers, etc
    return backpointers dictionary
```

(Note: let t_{s} be the time needed to get the next smallest node, and let t_{u} be the time needed to update vertex costs. We'll treat these as unknowns for now.)

Dijkstra's algorithm: analyzing runtime

Our runtime:

$$
\mathcal{O}\left(|V| \cdot t_{s}+|V| \cdot|E| \cdot t_{u}\right)
$$

Question:

Do we really need to update vertex costs $|V| \cdot|E|$ times?

```
while (we still have unvisited nodes):
    current = get next smallest node
    for (edge : current.getOutEdges()):
    newCost = min(cost(current) + edge.cost, cost(edge,dest))
    update cost(edge.dest) to newCost, update backpointers, etc
```


Things we know:

- Initialization takes $\mathcal{O}(|V|)$ time
- The while loop repeats $|V|$ times
- The inner foreach loop repeats $|E|$ times (???)?
- The inner foreach loop does $\mathcal{O}\left(t_{u}\right)$ work per eiteration
- So while loop does $\mathcal{O}\left(t_{s}+|E| \cdot t_{u}\right)$ work per iteration

Final runtime:

$$
\mathcal{O}\left(|V|+|V| \cdot\left(t_{s}+|E| \cdot t_{u}\right)\right)
$$

Distribute:

$$
\mathcal{O}\left(|V|+|V| \cdot t_{s}+|V| \cdot|E| \cdot t_{u}\right)
$$

The lone $|V|$ is dominated by $|V| \cdot t_{s}$:

$$
\mathcal{O}\left(|V| \cdot t_{s}+|V| \cdot|E| \cdot t_{u}\right)
$$

Dijkstra's algorithm: analyzing runtime

while (we still have unvisited nodes):
current $=$ get next smallest made
for (edge : current. getOutEdges()):
nenCost $=\min (\cos t$ (current) + edge.cost, cost (edge.dest))
update cost(edge.dest) to nenCost, update backpointers, etc

Observations about the foreach loop:

- We don't know how many times it runs per each iteration
- ...but we do know num times it runs across all iterations!

Original bound:

$$
\mathcal{O}\left(|V| \cdot t_{\mathrm{s}}+|V| \cdot|E| \cdot t_{u}\right)
$$

We update at most once per edge - so, a tighter bound:

$$
\mathcal{O}\left(|V| \cdot t_{s}+|E| \cdot t_{u}\right)
$$

Our runtime so far:

$$
\mathcal{O}\left(|V| \cdot t_{s}+|E| \cdot t_{u}\right)
$$

Question: So, what exactly is t_{s} and t_{u} ?

Answer: Depends on how we store nodes and costs!

Dijkstra's algorithm: finding and updating nodes

Observation: there are two operations we care about: finding the node with the min cost, and given a node, updating its cost

Ideas:

- Use a binary heaps: lets us find a node with min cost easily
- Use a dictionary: lets us update the value corresponding to a node easily

Exercise: fill out this table

Data structure	Remove $\min \left(t_{s}\right)$	Update $\operatorname{cost}\left(t_{u}\right)$
Hash map	$\mathcal{O}(\|V\|)$	$\mathcal{O}(\|1\|)$
Sorted array	$\mathcal{O}(1)$	$\mathcal{O}(\|V\|)$
AVL tree	$\mathcal{O}(\log (\|V\|))$	$\mathcal{O}(\log (\|V\|))$
Binary heap	$\mathcal{O}(\log (\|V\|))$	$\mathcal{O}(\|V\|)$

The AVL version looks actually pretty reasonable

Another common approach: modify binary heaps so they can update the cost in $\mathcal{O}(\log (n))$ time (a "hybrid" binary heap):

- Two fields: the same heap internal array, and a hash table mapping vertices to their index in the array.
- Assumptions: each vertex is unique; we only decrease the cost
- Implementing removeMin:

Run the standard removeMin heap algorithm. As we swap nodes, add some extra code to keep the hash map up-to-date. This is still $\mathcal{O}(\log (n))$.

- Implementing updateCost: Use the hash map to get the index of the given node. Run percolateUp, updating the hash map as we go.
This is still $\mathcal{O}(\log (n))$.

Dijkstra's algorithm: finding and updating nodes

Data structure	removeMin $\left(t_{s}\right)$	updateCost $\left(t_{u}\right)$
Hash map	$\mathcal{O}(\|V\|)$	$\mathcal{O}(\|1\|)$
Sorted array	$\mathcal{O}(1)$	$\mathcal{O}(\|V\|)$
AVL tree	$\mathcal{O}(\log (\|V\|))$	$\mathcal{O}(\log (\|V\|))$
Binary heap	$\mathcal{O}(\log (\|V\|))$	$\mathcal{O}(\|V\|)$
"Hybrid" binary heap	$\mathcal{O}(\log (\|V\|))$	$\mathcal{O}(\log (\|V\|))$
Fibonacci heaps	$\mathcal{O}(\log (\|V\|))$	$\mathcal{O}(1)$

Note: Fibonacci heaps are beyond the scope of this class

Dijkstra's algorithm: finding and updating nodes

Observation: Gosh, this all sounds exhausting
What if we replace the binary heap's call to updateCost with insert and just allow duplicates?

Runtime is now $\mathcal{O}((|V|+|E|) \log (|V|+|E|))$ - the analysis is left as an exercise to the reader.

So, less efficient, but easiest to implement.

