
CSE 373: Graph traversal

Michael Lee
Friday, Feb 16, 2018

1

Warmup

Warmup
Given a graph, assign each node one of two colors such that no
two adjacent vertices have the same color. (If it’s impossible to
color the graph this way, your algorithm should say so).

Solution: This algorithm is known as the 2-color algorithm. We
can solve it by using any graph traversal algorithm, and alternating
colors as we go from node to node.

2

Goal: How do we traverse graphs?

Today’s goal: how do we traverse graphs?

Idea 1: Just get a list of the vertices and loop over them

Problem: What if we want to traverse graphs following the edges?

For example, can we...

I Traverse a graph to find if there’s a connection from one node
to another?

I Determine if we can start from our node and touch every
other node?

I Find the shortest path between two nodes?

Solution: Use graph traversal algorithms like breadth-first search
and depth-first search

3

Breadth-first search (BFS) example

search(v):

visited = empty set

queue.enqueue(v)

visited.add(v)

while (queue is not empty):

curr = queue.dequeue()

for (w : v.neighbors()):

if (w not in visited):

queue.enqueue(w)

visited.add(curr)

a

b

d

c

e

f

g

h
i j

Current node: a b d c e f g h i

Queue: a, b, d, c, e, f, g, h, i,

Visited: a, b, d, c, e, f, g, h, i,

4

Breadth-first search (BFS)

Breadth-first traversal, core idea:

1. Use something (e.g. a queue) to keep track of every vertex to
visit

2. Add and remove nodes from queue until it’s empty
3. Use a set to store nodes we don’t want to recheck/revisit
4. Runtime:

I We visit each node once.
I For each node, check each edge to see if we should add to

queue
I So we check each edge at most twice

So, O (|V |+ 2|E |), which simplifies to O (|V |+ |E |).

5

Breadth-first search (BFS)

Pseudocode:

search(v):

visited = empty set

queue.enqueue(v)

visited.add(v)

while (queue is not empty):

curr = queue.dequeue()

for (w : v.neighbors()):

if (w not in visited):

queue.enqueue(w)

visited.add(curr)

6

An interesting property...

Note: We visited the nodes in “rings” – maintained a gradually
growing “frontier” of nodes.

a

b

d

c

e

f

g

h
i j

7

An interesting property...

What does this look like for trees?

The algorithm traverses the width, or “breadth” of the tree

8

Depth-first search (DFS)

Question: Why a queue? Can we use other data structures?

Answer: Yes! Any kind of list-like thing that supports appends
and removes works! For example, what if we try using a stack?

The BFS algorithm:
search(v):

visited = empty set

queue.enqueue(v)

visited.add(v)

while (queue is not empty):

curr = queue.dequeue()

for (w : v.neighbors()):

if (w not in visited):

queue.enqueue(w)

visited.add(curr)

The DFS algorithm:
search(v):

visited = empty set

stack.push(v)

visited.add(v)

while (stack is not empty):

curr = stack.pop()

visited.add(curr)

for (w : v.neighbors()):

if (w not in visited):

stack.push(w)

visited.add(v)

9

Depth-first search (DFS) example

search(v):

visited = empty set

stack.push(v)

while (stack is not empty):

curr = stack.pop()

visited.add(curr)

for (w : v.neighbors()):

if (w not in visited):

stack.push(w)

a

b

d

e

f

g

h
i

c

j

Current node: adgihfecb

Stack: a, b, d, e, f, g, h, i, c,

Visited: a, b, d, e, f, g, h, i, e, c,

10

Depth-first search (DFS)

Depth-first traversal, core idea:

1. Instead of using a queue, use a stack. Otherwise, keep
everything the same.

2. Runtime: also O (|V |+ |E |) for same reasons as BFS

Pseudocode:
search(v):

visited = empty set

stack.push(v)

visited.add(v)

while (stack is not empty):

curr = stack.pop()

for (w : v.neighbors()):

if (w not in visited):

stack.push(w)

visited.add(curr) 11

An interesting property...

Note: Rather the growing the node in “rings”, we randomly
wandered through the graph until we got stuck, then
“backtracked”.

a

b

d

c

e

f

g

h
i j

12

An interesting property...

What does this look like for trees?

The algorithm traverses to the bottom first: it prioritizes the
“depth” of the tree

Note: rest of algorithm omitted

13

Compare and contrast

Question: When do we use BFS vs DFS?

Related question: How much memory does BFS and DFS use in
the worst case?

I BFS: O (|V |) – what if every node is connected to the start?
I DFS: O (|V |) – what if the nodes are arranged like a linked

list?

So, in the worst case, BFS and DFS both have the same
worst-case runtime and memory usage.

They only differ in what order they visit the nodes.

14

Compare and contrast

How much memory does BFS and DFS use in the average case?

Related question: how much memory do they use when we want to
traverse a tree?

I BFS: O (“width” of tree) = O (num leaves)
I DFS: O (height)

For graphs:

I Use BFS if graph is “narrow”, or if solution is “near” start
I Use DFS if graph is “wide”

In practice, graphs are often large/very wide, so DFS is often a
good default choice. (It’s also possible to implement DFS
recursively!)

15

Design challenge

Question: How would you modify BFS to find the shortest path
between every node?

S E

a

w

b

x y

z

Observation: Since BFS moves out in rings, we will reach the end
node via the path of length 3 first.

Idea: when we enqueue, store where we came from in some way.
(e.g. mark node, use a dictionary...)

After BFS is done, backtrack. 16

Design challenge: pathfinding

Question: How would you modify BFS to find the shortest path
between every node?

S E

a

w

b

x y

z

Now, start from any node, follow arrows, then reverse to get path.

17

Design challenge: pathfinding

Question: What if the edges have weights?

100
100

100

2

2
2

2

2
S E

a b

w

x y

z

Weighted graph
A weighted graph is a kind of graph where each edge has a
numerical “weight” associated with it.

This number can represent anything, but is often (but not
always!) used to indicate the “cost” of traveling down that edge. 18

Pathfinding and DFS

We can use BFS to correctly find the shortest path between two
nodes in an unweighted graph...

...but it fails if the graph is weighted!

We need a better algorithm.

Today: Dijkstra’s algorithm

19

Dijkstra’s algorithm

Core idea:

1. Assign each node an initial cost of ∞
2. Set our starting node’s cost to 0
3. Update all adjacent vertices costs to the minimum known cost
4. Mark the current node as being “done”
5. Pick the next unvisited node with the minimum cost. Go to

step 3.

Metaphor: Treat edges as canals and edge weights as distance.
Imagine opening a dam at the starting node. How long does it
take for the water to reach each vertex?

Caveat: Dijkstra’s algorithm only guaranteed to work for graphs
with no negative edge weights.

Pronunciation: DYKE-struh (“dijk” rhymes with “bike”) 20

Dijkstra’s algorithm

Suppose we start at vertex “a”:

a b f h

d c e g

2

1
4 5

10

2

9
112

7

1

3

2

3

1

And we’re done! Now, to find the shortest path, from a to a node,
start at the end, trace the red arrows backwards, and reverse the
list.

21

Dijkstra’s algorithm

Suppose we start at vertex “a”:

a
∞

b
∞

f
∞

h
∞

d
∞

c
∞

e
∞

g
∞

2

1
4 5

10

2

9
112

7

1

3

2

3

1

We initially assign all nodes a cost of infinity.

And we’re done!
Now, to find the shortest path, from a to a node, start at the end,
trace the red arrows backwards, and reverse the list.

21

Dijkstra’s algorithm

Suppose we start at vertex “a”:

a
0

b
∞

f
∞

h
∞

d
∞

c
∞

e
∞

g
∞

2

1
4 5

10

2

9
112

7

1

3

2

3

1

Next, assign the starting node a cost of 0.

And we’re done! Now,
to find the shortest path, from a to a node, start at the end, trace
the red arrows backwards, and reverse the list.

21

Dijkstra’s algorithm

Suppose we start at vertex “a”:

a
0

b
2

f
∞

h
∞

d
4

c
1

e
∞

g
∞

2

1
4 5

10

2

9
112

7

1

3

2

3

1

Next, update all adjacent node costs as well as the backpointers.

And we’re done! Now, to find the shortest path, from a to a node,
start at the end, trace the red arrows backwards, and reverse the
list.

21

Dijkstra’s algorithm

Suppose we start at vertex “a”:

a
0

b
2

f
∞

h
∞

d
4

c
1

e
∞

g
∞

2

1
4 5 10

2

9
112

7

1

3

2

3

1

The pending node with the smallest cost is c, so we visit that next.

And we’re done! Now, to find the shortest path, from a to a node,
start at the end, trace the red arrows backwards, and reverse the
list.

21

Dijkstra’s algorithm

Suppose we start at vertex “a”:

a
0

b
2

f
∞

h
∞

d
4

c
1

e
12

g
∞

2

1
4 5 10

2

9
112

7

1

3

2

3

1

We consider all adjacent nodes. a is fixed, so we only need to
update e. Note the new cost of e is the sum of the weights for
a − c and c − e.

And we’re done! Now, to find the shortest path,
from a to a node, start at the end, trace the red arrows backwards,
and reverse the list.

21

Dijkstra’s algorithm

Suppose we start at vertex “a”:

a
0

b
2

f
∞

h
∞

d
4

c
1

e
12

g
∞

2

1
4 5

10

2

9
112

7

1

3

2

3

1

b is the next pending node with smallest cost.

And we’re done!
Now, to find the shortest path, from a to a node, start at the end,
trace the red arrows backwards, and reverse the list.

21

Dijkstra’s algorithm

Suppose we start at vertex “a”:

a
0

b
2

f
4

h
∞

d
4

c
1

e
12

g
∞

2

1
4 5

10

2

9
112

7

1

3

2

3

1

The adjacent nodes are c, e, and f . The only node where we can
update the cost is f . Note the route a − b − e has the same cost as
a − c − e, so there’s no point in updating the backpointer to e.

And
we’re done! Now, to find the shortest path, from a to a node, start
at the end, trace the red arrows backwards, and reverse the list.

21

Dijkstra’s algorithm

Suppose we start at vertex “a”:

a
0

b
2

f
4

h
∞

d
4

c
1

e
12

g
∞

2

1
4 5

10

2

9
112

7

1

3

2

3

1

Both d and f have the same cost, so let’s (arbitrarily) pick d next.
Note that we can’t adjust any of our neighbors.

And we’re done!
Now, to find the shortest path, from a to a node, start at the end,
trace the red arrows backwards, and reverse the list.

21

Dijkstra’s algorithm

Suppose we start at vertex “a”:

a
0

b
2

f
4

h
∞

d
4

c
1

e
12

g
∞

2

1
4 5

10

2

9
112

7

1

3

2

3

1

Next up is f .

And we’re done! Now, to find the shortest path, from
a to a node, start at the end, trace the red arrows backwards, and
reverse the list.

21

Dijkstra’s algorithm

Suppose we start at vertex “a”:

a
0

b
2

f
4

h
7

d
4

c
1

e
12

g
∞

2

1
4 5

10

2

9
112

7

1

3

2

3

1

The only neighbor we is h.

And we’re done! Now, to find the
shortest path, from a to a node, start at the end, trace the red
arrows backwards, and reverse the list.

21

Dijkstra’s algorithm

Suppose we start at vertex “a”:

a
0

b
2

f
4

h
7

d
4

c
1

e
12

g
∞

2

1
4 5

10

2

9
112

7

1

3

2

3

1

h has the smallest cost now.

And we’re done! Now, to find the
shortest path, from a to a node, start at the end, trace the red
arrows backwards, and reverse the list.

21

Dijkstra’s algorithm

Suppose we start at vertex “a”:

a
0

b
2

f
4

h
7

d
4

c
1

e
12

g
8

2

1
4 5

10

2

9
112

7

1

3

2

3

1

We update g .

And we’re done! Now, to find the shortest path,
from a to a node, start at the end, trace the red arrows backwards,
and reverse the list.

21

Dijkstra’s algorithm

Suppose we start at vertex “a”:

a
0

b
2

f
4

h
7

d
4

c
1

e
12

g
8

2

1
4 5

10

2

9
112

7

1

3

2

3

1

Next up is g .

And we’re done! Now, to find the shortest path, from
a to a node, start at the end, trace the red arrows backwards, and
reverse the list.

21

Dijkstra’s algorithm

Suppose we start at vertex “a”:

a
0

b
2

f
4

h
7

d
4

c
1

e
11

g
8

2

1
4 5

10

2

9
112

7

1

3

2

3

1

The two adjacent nodes are f and e. f is fixed so we leave it
alone. We however will update e: our current route is cheaper
then the previous route, so we update both the cost and the
backpointer.

And we’re done! Now, to find the shortest path, from
a to a node, start at the end, trace the red arrows backwards, and
reverse the list.

21

Dijkstra’s algorithm

Suppose we start at vertex “a”:

a
0

b
2

f
4

h
7

d
4

c
1

e
11

g
8

2

1
4 5

10

2

9
112

7

1

3

2

3

1

The last pending node is e. We visit it, and check for any unfixed
adjacent nodes (there are none).

And we’re done! Now, to find the
shortest path, from a to a node, start at the end, trace the red
arrows backwards, and reverse the list.

21

Dijkstra’s algorithm

Suppose we start at vertex “a”:

a
0

b
2

f
4

h
7

d
4

c
1

e
11

g
8

2

1
4 5

10

2

9
112

7

1

3

2

3

1

And we’re done! Now, to find the shortest path, from a to a node,
start at the end, trace the red arrows backwards, and reverse the
list. 21

Dijkstra’s algorithm

Some implementation details...

I How do we keep track of the node costs?
I Could use a dictionary
I Could manually mark each node

I How do we find the node with the smallest cost?
I Could maintain a sorted list
I Could use a heap!

I If we’re using a heap, how do we update node costs?
I Could add a changeKeyPriority(...) method to heap
I Alternatively, add the node and the cost to the heap again

(and ignore duplicates)

22

Dijkstra’s algorithm

The pseudocode
def dijkstra(start):

backpointers = empty Dictionary of vertex to vertex

costs = Dictionary of vertex to double, initialized to infinity

visited = empty Set

heap = new Heap<Node with cost>();

heap.put([start, 0])

cost.put(start, 0)

while (heap is not empty):

current, currentCost = heap.removeMin()

skip if visited.contains(current), else visited.add(current)

for (edge : current.getOutEdges()):

skip if visited.contains(edge.dest), else visited.add(edge.dest)

newCost = currentCost + edge.cost

if (newCost > cost.get(edge.dest)):

cost.put(edge.dest, newCost)

heap.insert([edge.dest, newCost])

backpointers.put(edge.dest, current)

use backpointers dictionary to get path 23

