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The tree method: precise analysis

Problem: Need a rigorous way of getting a closed form

We want to answer a few core questions:

How much work does each recursive level do?

1. How many nodes are there on level i? (i = 0 is “root” level)
2. At some level i , how much work does a single node do?

(Ignoring subtrees)
3. How many recursive levels are there?

How much work does the leaf level (base cases) do?

1. How much work does a single leaf node do?
2. How many leaf nodes are there?
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The tree method: precise analysis
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The tree method: precise analysis

How many levels are there, exactly? Is it log2(n)?

Let’s try an example. Suppose we have T (4). What happens?

T (8)

4

2

1 1

2

1 1

Height is log2(4) = 2.

For this recursive function, num recursive levels is same as height.

Important: total levels, counting base case, is height + 1.

Important: for other recursive functions, where base case doesn’t
happen at n ≤ 1, num recursive levels might be different then
height.
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The tree method: precise analysis

We discovered:

1. numNodes(i) = 2i

2. workPerNode(n, i) = n
2i

3. numLevels(n) = log2(n)
4. workPerLeafNode(n) = 1

5. numLeafNodes(n) = 2numLevels(n) = 2log2(n) = n

Our formulas:

recursiveWork =

numLevels(n)∑
i=0

numNodes(i) · workPerNode(n, i)

baseCaseWork = numLeafNodes(n) · workPerLeafNode(n)
totalWork = recursiveWork + baseCaseWork
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The tree method: precise analysis

Solve for recursive case:

recursiveWork =

log2(n)∑
i=0

2i · n
2i

=

log2(n)∑
i=0

n

= n log2(n)

Solve for base case:

baseCaseWork = numLeafNodes(n) · workDonePerLeafNode(n)
= n · 1 = n

So exact closed form is n log2(n) + n.
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The tree method: practice

Practice: Let’s go back to our old recurrence...

S(n) =

2 if n ≤ 1

2S (n/3) + n2 otherwise
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The tree method: practice
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The tree method: practice

1. numNodes(i) = 2i

2. workPerNode(n, i) = n2

9i

3. numLevels(n) = log3(n)
4. workPerLeafNode(n) = 2

5. numLeafNodes(n) = 2numLevels(n) = 2log3(n) = nlog3(2)

Combine into a single expression representing the total runtime.

totalWork =

log3(n)∑
i=0

2i · n2

9i

+ 2nlog3(2)

= n2

log3(n)∑
i=0

2i

9i + 2nlog3(2)

= n2

log3(n)∑
i=0

(
2

9

)i
+ 2nlog3(2)
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The finite geometric series

We have: n2

log3(n)∑
i=0

(
2

9

)i
+ 2nlog3(2)

The finite geometric series identity:
n−1∑
i=0

r i =
1− rn

1− r

Plug and chug:

totalWork = n2

log3(n)∑
i=0

(
2

9

)i
+ 2nlog3(2)

= n2

log3(n)+1−1∑
i=0

(
2

9

)i
+ 2nlog3(2)

= n2 1−
(
2
9

)log3(n)+1

1− 2
9

+ 2nlog3(2)
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Applying the finite geometric series

With a bunch of effort...

totalWork = n2 1−
(
2
9

)log3(n)+1

1− 2
9

+ 2nlog3(2)

=
9

7
n2

(
1− 2

9

(
2

9

)log3(n)
)

+ 2nlog3(2)

=
9

7
n2 − 2

7
n2

(
2

9

)log3(n)
+ 2nlog3(2)

=
9

7
n2 − 2

7
n2nlog3(2/9) + 2nlog3(2)

=
9

7
n2 − 2

7
n2nlog3(2)−2 + 2nlog3(2)

=
9

7
n2 − 2

7
nlog3(2) + 2nlog3(2)

=
9

7
n2 +

12

7
nlog3(2)
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The master theorem

Is there an easier way?

If we want to find an exact closed form, no. Must use either the
unfolding technique or the tree technique.

If we want to find a big-Θ bound, yes.
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The master theorem

The master theorem
Suppose we have a recurrence of the following form:

T (n) =

d if n = 1

aT
( n

b
)
+ nc otherwise

Then...

I If logb(a) < c, then T (n) ∈ Θ(nc)

I If logb(a) = c, then T (n) ∈ Θ(nc log(n))
I If logb(a) > c, then T (n) ∈ Θ

(
nlogb(a)

)

13



The master theorem

The master theorem
Suppose we have a recurrence of the following form:

T (n) =

d if n = 1

aT
( n

b
)
+ nc otherwise

Then...

I If logb(a) < c, then T (n) ∈ Θ(nc)

I If logb(a) = c, then T (n) ∈ Θ(nc log(n))
I If logb(a) > c, then T (n) ∈ Θ

(
nlogb(a)

)

13



The master theorem

Given:

T (n) =

d
aT
( n

b
)
+ nc

Then...
If logb(a) < c, then T (n) ∈ Θ(nc)

If logb(a) = c, then T (n) ∈ Θ(nc log(n))
If logb(a) > c, then T (n) ∈ Θ

(
nlogb(a)

)

Sanity check: try checking merge sort.

We have a = 2, b = 2, and c = 1. We know
logb(a) = log2(2) = 1 = c, therefore merge sort is Θ(n log(n)).

Sanity check: try checking S(n) = 2S(n/3) + n2.

We have a = 2, b = 3, and c = 2. We know log3(2) ≤ 1 < 2 = c,
therefore S(n) ∈ Θ

(
n2
)
.
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The master theorem: intuition

Intuition, the logb(a) < c case:

1. We do work more rapidly then we divide.
2. So, more of the work happens near the “top”, which means

that the nc term dominates.

15



The master theorem: intuition

Intuition, the logb(a) > c case:

1. We divide more rapidly then we do work.
2. So, most of the work happens near the “bottom”, which

means the work done in the leaves dominates.
3. Note: Work in leaves is about

d · aheight = d · alogb(n) = d · nlogb(a).

16



The master theorem: intuition

Intuition, the logb(a) = c case:

1. Work is done roughly equally throughout tree.
2. Each level does about the same amount of work, so we

approximate by just multiplying work done on first level by the
height: nc logb(n).

17



Parting thoughts on sorting

A few final thoughts about sorting...

18



Hybrid sorts

Problem: Quick sort, in the best case, is pretty fast – often a
constant factor faster then merge sort. But in the worst case, it’s
O
(
n2
)
!

Idea: If things start looking bad, stop using quicksort! Switch to a
different sorting algorithm.

Hybrid sort
A sorting algorithm which combines two or more other sorting
algorithms.
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Hybrid sort example: introsort

Example: Introsort
Core idea: Combine quick sort with heap sort

(Why heap sort? It’s also O (n log(n)), and can be implemented
in-place.)

1. Run quicksort, but keep track of how many recursive calls
we’ve made

2. If we pass some threshold (usually, 2blg(n)c)
2.1 Assume we’ve hit our worst case and switch to heapsort
2.2 Else continue using quick sort

Punchline: worst-case runtime is now O (n log(n)), not O
(
n2
)
.

Used by various C++ implementations, used by Microsoft’s .NET
framework.
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Adaptive sorts

Observation: Most real-world data is contains “mostly-sorted
runs” – chunks of data that are already sorted.

Idea: Modify our strategy based on what the input data actually
looks like!
Adaptive sort
A sorting algorithm that adapts to patterns and pre-existing order
in the input.

Most adaptive sorts take advantage of how real-world data is
often partially sorted.
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Adaptive sorts: Timsort

Example: Timsort
Core idea: Combine merge sort with insertion sort

(Who’s Tim? A Python core developer)

1. Works by looking for “sorted runs”.
2. Will use insertion sort to merge two small runs and merge sort

to merge two large runs
3. Implementation is very complex – lots of nuances, lots of

clever tricks (e.g. detecting runs that are in reverse sorted
order, sometimes skipping elements)

Punchline: worst-case runtime is still O (n log(n)), but best case
runtime is O (n).

Used by Python and Java.
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Linear sorts

Linear sorts (aka ‘Niche’ sorts)
Basic idea: Can we do better then O (n log(n)) if we assume more
things about the input list?

23



Counting sort

Counting sort

I Assumption: Input is a list of ints where every item is
between 0 and k

I Worst-case runtime:

O (n + k)

How would you implement this? Hint: start by creating a temp
array of length k. Take inspiration from how hash tables work.

The algorithm:

1. Create a temp array named arr of length k.
2. Loop through the input array. For each number num, run

arr[num] += 1

3. The temp array will now contain how many times we say each
number in the input list.

4. Iterate through it to create the output list.

24
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Other linear sorts

Other interesting linear sorts:

I Radix sort
I Assumes items in list are some kind of sequence-like thing such

as strings or ints (which is a sequence of digits)
I Assumes each “digit” is also sortable
I Sorts all the digits in the 1s place, then the 2s place...

I Bucket sort
I A generalization of counting sort
I Assumes items are randomly and uniformly distributed across a

range of possibilities
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Graphs

Introduction to graphs

26



What is a graph?

What is a graph?

This is a graph:

A

B CD

E

F

G
H

This is also a graph:

2 4 6 8

2

4

6

8

x

y

In this class, by “graph”, we mean the graph data structure.
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Graph: formal definition

Graph
A graph is a pair G = (V ,E), where...

I V is a set of vertices
I E is a set of edges (pairs of vertices)

Notes:

I Vertices are the circle things, edges are the lines
I The words “node” and “vertex” are synonyms

28



Graph: formal definition examples

Examples:

a

V = {a}
E = {}

b

c

d

V = {b, c, d}
E = {(b, c), (c, d)}

e

f

g

h

V = {e, f , g , h}
E = {(e, f ), (f , g),

(g , h), (h, e),
(e, g), (f , h)}

29



Applications of graphs

In a nutshell:

Graphs let us model the “relationship” between items.

If that seems like a very general definition, that’s because graphs
are a very general concept!

Core insight:

I Graphs are an abstract concept that appear in many different
ways

I Many problems can be modeled as a graph problem

Some examples...
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Application: Airline flight graph

Questions: What is the cheapest/shortest/etc flight from A to B?
Is the route the airline offering me actually the cheapest route?
What happens if a city is snowed in – how can we reroute flights?

http://allthingsgraphed.com/public/images/airline-google-earth.png
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Application: Social media graph

Questions: Why does this graph look clustered? Why are all my
friends more popular then me? Who do my friends know? If I want
to hire somebody to promote my product, who do I pick?
http://allthingsgraphed.com/public/images/facebook/facebook-friend-graph.png
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Application: Social media polarization

Questions: how to ideas flow between bloggers? Right now? Over
time? Who’s the most influential within a given party? In general?

http://allthingsgraphed.com/public/images/political-blogs-2004/left-right.png
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Application: Analyzing code

Questions: which files import which ones? Which files are most
used and should be optimized? What if two files import each
other? If a file has a security vulnerability, how might it propagate?
http://allthingsgraphed.com/public/images/java-call-graph/cassandra-import-graph.png
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Application of graphs

Other interesting questions:

I How does Google work?

I How do I solve Sudoku efficiently?
I How do genes in my DNA influence and regulate each other?
I How can I allocate registers to variables in a program?
I How similar/dissimilar are words? Based on spelling? Based

on meaning?

35



Application of graphs

Other interesting questions:

I How does Google work?
I How do I solve Sudoku efficiently?

I How do genes in my DNA influence and regulate each other?
I How can I allocate registers to variables in a program?
I How similar/dissimilar are words? Based on spelling? Based

on meaning?

35



Application of graphs

Other interesting questions:

I How does Google work?
I How do I solve Sudoku efficiently?
I How do genes in my DNA influence and regulate each other?

I How can I allocate registers to variables in a program?
I How similar/dissimilar are words? Based on spelling? Based

on meaning?

35



Application of graphs

Other interesting questions:

I How does Google work?
I How do I solve Sudoku efficiently?
I How do genes in my DNA influence and regulate each other?
I How can I allocate registers to variables in a program?

I How similar/dissimilar are words? Based on spelling? Based
on meaning?

35



Application of graphs

Other interesting questions:

I How does Google work?
I How do I solve Sudoku efficiently?
I How do genes in my DNA influence and regulate each other?
I How can I allocate registers to variables in a program?
I How similar/dissimilar are words? Based on spelling? Based

on meaning?

35



Modeling problems with graph

How would you model the following using graphs? Decide what
you think the vertices are and what the edges are:

I Maps (e.g. Google Maps)

Idea: vertices are intersections, edges are roads. How do we model
traffic? Paths for cyclists vs cars? One-way roads?

I Web pages

Idea: vertices are webpages, links are edges.

I A running program

Idea: model each statement as vertices, and the next lines it can
execute as edges.

I Courses at UW

Idea: model courses as vertices, and pre-requisites as edges.

I A family tree

Idea: model people as vertices, and relations as edges. Or the other
way around: model events like birth or divorce as vertices, and make
people the edges connecting events?
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Is there a “graph” ADT?

Question: is there a graph ADT?

Well, what operations belong to the ADT? Hmm, lots of ideas
(getEdge(v), reachableFrom(...), centrality(...), etc..)

Observation: It’s very unclear what the “standard operations” are

Instead, what we do is think about graphs abstractly, and think
about which algorithms are relevant to the problems at hand.
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Undirected graphs

Undirected graph
In a undirected graph, edges have no direction: are two-way

da
c

b

This means that (x , y) ∈ E implies that (y , x) ∈ E . (Often, we
treat these two pairs as equivalent and only include one).
Degree of a vertex
The degree of some vertex v is the number of edges containing
that vertex.

So, the degree is the number of adjacent vertices.
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Directed graphs

Directed graph
In a directed graph, edges do have a direction: are one-way

da
c

b

Now, (x , y) and (y , x) mean different things.

In-degree of a vertex
The in-degree of v is the number of edges that point to v .

Out-degree of a vertex
The out-degree of v is the number of edges that start at v .
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Self-loops and parallel edges

Self-loop
A self-loop is an edge that
starts and ends at the same
vertex.

a

Parallel edges
Two edges are parallel if they
both start and end at the
same vertices.

a b

Whether we allow or disallow self-loops and parallel edges depends
on what we’re trying to model.

Simple graph
A graph with no self-loops and no parallel edges.
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Some questions

Questions:

I In an undirected graph, is it possible to have a vertex with a
degree of zero?

Yes.

I In a directed graph, a vertex with an in-degree and out-degree
of both zero?

Yes.
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