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Technique: Divide-and-Conquer

Divide-and-conquer is a useful technique for solving many kinds of
problems. It consists of the following steps:

1. Divide your work up into smaller pieces (recursively)
2. Conquer the individual pieces (as base cases)
3. Combine the results together (recursively)

Example template

algorithm(input) {

if (small enough) {

CONQUER, solve, and return input

} else {

DIVIDE input into multiple pieces

RECURSE on each piece

COMBINE and return results

}

}
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Merge sort: Core pieces

Divide:

Split array roughly into half

Unsorted

Unsorted Unsorted

Conquer:

Return array when length ≤ 1

Combine:

Combine two sorted arrays using merge

Sorted Sorted

Sorted
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Merge sort: Summary

Core idea: split array in half, sort each half, merge back together.
If the array has size 0 or 1, just return it unchanged.

Pseudocode

sort(input) {

if (input.length < 2) {

return input;

} else {

smallerHalf = sort(input[0, ..., mid]);

largerHalf = sort(input[mid + 1, ...]);

return merge(smallerHalf, largerHalf);

}

}
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Merge sort: Example
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Merge sort: Analysis

Pseudocode

sort(input) {

if (input.length < 2) {

return input;

} else {

smallerHalf = sort(input[0, ..., mid]);

largerHalf = sort(input[mid + 1, ...]);

return merge(smallerHalf, largerHalf);

}

}

Best case runtime? Worst case runtime?
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Merge sort: Analysis

Best and worst case

We always subdivide the array in half on each recursive call, and
merge takes O (n) time to run. So, the best and worst case
runtime is the same:

T (n) =

1 if n ≤ 1

2T (n/2) + n otherwise

Spoiler alert: this is Θ(n log(n))
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Quick sort: Divide step
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Quick sort: Core pieces

Divide: Pick a pivot, partition into groups

UnsortedP

≤ P > P

Conquer:

Return array when length ≤ 1

Combine:

Combine sorted portions and the pivot

≤ P P > P

Sorted
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Quick sort: Summary

Core idea: Pick some item from the array and call it the pivot.
Put all items smaller in the pivot into one group and all items
larger in the other and recursively sort. If the array has size 0 or 1,
just return it unchanged.

Pseudocode

sort(input) {

if (input.length < 2) {

return input;

} else {

pivot = getPivot(input);

smallerHalf = sort(getSmaller(pivot, input));

largerHalf = sort(getBigger(pivot, input));

return smallerHalf + pivot + largerHalf;

}

}
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Quick sort: Example
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Quick sort: Analysis

Pseudocode

sort(input) {

if (input.length < 2) {

return input;

} else {

pivot = getPivot(input);

smallerHalf = sort(getSmaller(pivot, input));

largerHalf = sort(getBigger(pivot, input));

return smallerHalf + pivot + largerHalf;

}

}

Best case runtime? Worst case runtime?
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Quick sort: Analysis

Best case analysis
In the best case, we always pick the median element.

T (n) =

2T (n/2) + n if n > 1

1 otherwise

(Spoiler alert: this is Θ(n log(n))
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Quick sort: Analysis

Worst case analysis
In the worst case, we always end up picking the minimum or
maximum element.

T (n) =

T (n − 1) + n if n > 1

1 otherwise

So, the worst-case runtime is Θ
(
n2
)
.
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Quick sort: Analysis

Best case analysis
In the best case, we always pick the median element, so the
best-case runtime is Θ(n log(n)).

Worst case analysis
In the worst case, we always end up picking the minimum or
maximum element, so, the worst-case runtime is Θ

(
n2
)
.

Average case runtime
Usually, we’ll pick a random element, which makes the runtime
Θ(n log(n)).
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Quick sort: Unresolved questions

How do we pick a pivot?

I Worst case? Pick the minimum or the maximum. The work
will shrink by only 1 on each recursive call.

I Ideally? Pick the median. The work will split in half on each
recursive call.

How do we partition?

20
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Quick sort: Picking a pivot

How do we find the median?

I Idea: pick the first item in the array

I Problem: what if the array is already sorted?
I (Real world data often is partially sorted)
I But hey, it’s speedy (O (1))

I Idea: try finding it by looping through the array

I Problem: hard to implement, and expensive (O (n))

These seem like bad ideas :(

21
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Quick sort: Picking a pivot

Other ideas:

I Idea: pick a random element

I On average, guaranteed to do well – no easy worst case
I Random number generation can sometimes be

expensive/fraught with peril

I Idea: pick the median of first, middle, and last

I Adversary could still construct malicious input
I ...but works well in practice, and is efficient

These seem like good ideas :)
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Quick sort: Unresolved questions

How do we pick a pivot?
How do we partition?

23



Quick sort: Partitioning (using median-of-three pivot)

Find the lo, med, and hi

8
a[0]

1
a[1]

4
a[2]

9
a[3]

0
a[4]

3
a[5]

5
a[6]

2
a[7]

7
a[8]

6
a[9]

Find the median of the three and swap with front
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4
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9
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3
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5
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2
a[7]

7
a[8]
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a[9]

Final result: pivot is now at index 0
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4
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9
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3
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5
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7
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8
a[9]
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Quick sort: Partitioning (using median-of-three pivot)

Array after moving pivot:

6
a[0]

1
a[1]

4
a[2]

9
a[3]

0
a[4]

3
a[5]

5
a[6]

2
a[7]

7
a[8]

8
a[9]

Partitioning:

6
a[0]

1
a[1]

4
a[2]

9
a[3]

0
a[4]

3
a[5]

5
a[6]

2
a[7]

7
a[8]

8
a[9]

low
1 ≤ 6

high
8 > 6
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Quick sort: Partitioning (using median-of-three pivot)
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Quick sort: Partitioning (using median-of-three pivot)

Array after moving pivot:

6
a[0]

1
a[1]

4
a[2]

9
a[3]

0
a[4]

3
a[5]

5
a[6]

2
a[7]

7
a[8]

8
a[9]

Partitioning:

5
a[0]

1
a[1]

4
a[2]

2
a[3]

0
a[4]

3
a[5]

6
a[6]

9
a[7]

7
a[8]

8
a[9]

Unsorted ≤ 6 Unsorted > 6
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Quick sort: Core pieces revisited

Divide: Pick a pivot, partition in-place into groups

Unsorted P

≤ P > PP

Conquer: When subarray is length ≤ 1, do nothing

Combine: Do nothing; already done!

≤ P > PP

≤ P > PP
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Analyzing recurrences, part 2

So, merge sort and quick sort are both:

T (n) =

1 if n ≤ 1

2T (n/2) + n otherwise

I claim T (n) ∈ Θ(n log(n)). How can we show this?

27
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Analyzing recurrences, part 2

We could try unfolding, but it’s annoying:

T (n) = n + 2T
(n
2

)

= n + 2
(n
2
+ 2T

(n
4

))
= n + 2

(n
2
+ 2T

(n
4

))
= n + 2

(n
2
+ 2T

(n
4
+ 2T (

n
8

))
= n + n + 4T

(n
4
+ 2T

(n
8

))
= n + n + n + 8T

(n
8

)
= n + n + · · ·+ n︸ ︷︷ ︸

about log(n) times

+n

= n log(n)
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The tree method: overview

Core idea:

1. Draw what the work looks like visually, as a tree

2. Use the visualization to help us analyze the overall behavior
3. Either find the closed form, or construct a summation that we

can simplify to get the closed form

29
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The tree method: example

Step 1: Start with the function, let n be the input value

T (n)

Final step: how much work does each base case do?
n

n
2

n
4

...

1 1

...

1 1

n
4

...

1 1

...

1 1

n
2

n
4

...

1 1

...

1 1

n
4

...

1 1

...

1 1
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The tree method: example

Step 2: Replace with definition

T
(n
2

)
+ T

(n
2

)
+ n

Final step: how much work does each base case do?
n

n
2

n
4

...

1 1

...

1 1

n
4

...

1 1

...

1 1

n
2

n
4

...

1 1

...

1 1

n
4

...

1 1

...

1 1
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The tree method: example

Step 3: Stick each recursive call into a subtree
n

T
(n
2

)
T
(n
2

)

Final step: how much work does each base case do?
n
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The tree method: example

Step 4: Replace with definition
n

T
(n
4

)
+ T

(n
4

)
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2 T
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4

)
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4

)
+ n

2

Final step: how much work does each base case do?
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The tree method: example

Repeat step 3 (move recursive call to subtrees):
n

n
2

T
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4

)
T
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4

)
n
2

T
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4

)
T
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4

)

Final step: how much work does each base case do?
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The tree method: example

Repeat step 4 (replace recursive call with definition):
n

n
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4 2T
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The tree method: example

Repeat...
n

n
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n
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The tree method: example

Final step: how much work does each base case do?
n

n
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n
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n
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The tree method: analysis

Now, let’s add everything up!

How much work is done per level?

n

n
2

n
4

...

1 1

...

1 1

n
4

...

1 1

...

1 1

n
2

n
4

...

1 1

...

1 1

n
4

...

1 1

...

1 1

n work

n work

n work

n work

n work

Height is roughly log2(n), so total work is about n log2(n).
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The tree method: practice

Consider the following recurrence:

S(n) =

2 if n ≤ 1

2S (n/3) + n2 otherwise

Draw a tree to help you visualize the work done.
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The tree method: practice

Step 1: Start with the function, let n be the input value

S(n)

Final step: how much work does each base case do?
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The tree method: practice

Step 2: Replace with definition
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The tree method: practice

Step 3: Stick each recursive call into a subtree
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The tree method: practice
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The tree method: practice

Repeat step 3 (move recursive call to subtrees):
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The tree method: practice
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The tree method: practice

Repeat...
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The tree method: practice

Final step: how much work does each base case do?
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The tree method: practice

Final step: how much work does each base case do?
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The tree method: precise analysis

Problem: Need a rigorous way of getting a closed form

We want to answer a few core questions:

How much work does each recursive level do?

1. How many nodes are there on level i? (i = 0 is “root” level)
2. At some level i , how much work does a single node do?

(Ignoring subtrees)
3. How many recursive levels are there?

How much work does the leaf level (base cases) do?

1. How much work does a single leaf node do?
2. How many leaf nodes are there?
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The tree method: precise analysis

n

n
2

n
4
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n
4
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1 1

n
2

n
4
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1 1
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1 1

n
4

...

1 1

...

1 1

1 node, n work per

2 nodes, n
2

work per

4 nodes, n
4

work per

2i nodes, n
i work per

2h nodes, 1 work per

1. numNodes(i) = 2i

2. workPerNode(n, i) = n
2i

3. numLevels(n) = ?
4. workPerLeafNode(n) = 1

5. numLeafNodes(n) = ?
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The tree method: precise analysis
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The tree method: precise analysis

How many levels are there, exactly? Is it log2(n)?

Let’s try an example. Suppose we have T (4). What happens?

T (8)

4

2

1 1

2

1 1

Height is log2(4) = 2.

For this recursive function, num recursive levels is same as height.

Important: total levels, counting base case, is height + 1.

Important: for other recursive functions, where base case doesn’t
happen at n ≤ 1, num recursive levels might be different then
height.
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The tree method: precise analysis

We discovered:

1. numNodes(i) = 2i

2. workPerNode(n, i) = n
2i

3. numLevels(n) = log2(n)
4. workPerLeafNode(n) = 1

5. numLeafNodes(n) = 2numLevels(n) = 2log2(n) = n

Our formulas:

recursiveWork =

numLevels(n)∑
i=0

numNodes(i) · workPerNode(n, i)

baseCaseWork = numLeafNodes(n) · workPerLeafNode(n)
totalWork = recursiveWork + baseCaseWork
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The tree method: precise analysis

Solve for recursive case:

recursiveWork =

log2(n)∑
i=0

2i · n
2i

=

log2(n)∑
i=0

n

= n log2(n)

Solve for base case:

baseCaseWork = numLeafNodes(n) · workDonePerLeafNode(n)
= n · 1 = n

So exact closed form is n log2(n) + n.
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The tree method: practice

Practice: Let’s go back to our old recurrence...

S(n) =

2 if n ≤ 1

2S (n/3) + n2 otherwise
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The tree method: practice
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4 nodes, n2
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2i nodes, n2
32i work per

2h nodes, 1 work per

1. numNodes(i) = 2i

2. workPerNode(n, i) = n2

9i

3. numLevels(n) = log3(n)
4. workPerLeafNode(n) = 2

5. numLeafNodes(n) = 2numLevels(n) = 2log3(n) = nlog3(2)
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The tree method: practice

n2

n2

9

n4

81

...

2 2

...

2 2

n2

81

...

2 2

...

2 2

n2

9

n2

81

...

2 2

...

2 2

n2

81

...

2 2

...

2 2

1 node, n2 work per

2 nodes, n2
32

work per

4 nodes, n2
34

work per

2i nodes, n2
32i work per

2h nodes, 1 work per

1. numNodes(i) = 2i

2. workPerNode(n, i) = n2

9i

3. numLevels(n) = log3(n)
4. workPerLeafNode(n) = 2

5. numLeafNodes(n) = 2numLevels(n) = 2log3(n) = nlog3(2) 40



The tree method: practice

1. numNodes(i) = 2i

2. workPerNode(n, i) = n2

9i

3. numLevels(n) = log3(n)
4. workPerLeafNode(n) = 2

5. numLeafNodes(n) = 2numLevels(n) = 2log3(n) = nlog3(2)

Combine into a single expression representing the total runtime.

totalWork =

log3(n)∑
i=0

2i · n2

9i

+ 2nlog3(2)

= n2

log3(n)∑
i=0

2i

9i + 2nlog3(2)

= n2

log3(n)∑
i=0

(
2

9

)i
+ 2nlog3(2)
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The finite geometric series

We have: n2

log3(n)∑
i=0

(
2

9

)i
+ 2nlog3(2)

The finite geometric series identity:
n−1∑
i=0

r i =
1− rn

1− r

Plug and chug:

totalWork = n2

log3(n)∑
i=0

(
2

9

)i
+ 2nlog3(2)

= n2

log3(n)+1−1∑
i=0

(
2

9

)i
+ 2nlog3(2)

= n2 1−
(
2
9

)log3(n)+1

1− 2
9

+ 2nlog3(2)
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Applying the finite geometric series

With a bunch of effort...

totalWork = n2 1−
(
2
9

)log3(n)+1

1− 2
9

+ 2nlog3(2)

=
9

7
n2

(
1− 2

9

(
2

9

)log3(n)
)

+ 2nlog3(2)

=
9

7
n2 − 2

7
n2

(
2

9

)log3(n)
+ 2nlog3(2)

=
9

7
n2 − 2

7
n2nlog3(2/9) + 2nlog3(2)

=
9

7
n2 − 2

7
n2nlog3(2)−2 + 2nlog3(2)

=
9

7
n2 − 2

7
nlog3(2) + 2nlog3(2)

=
9

7
n2 +

12

7
nlog3(2)

43



The master theorem

Is there an easier way?

If we want to find an exact closed form, no. Must use either the
unfolding technique or the tree technique.

If we want to find a big-Θ bound, yes.
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The master theorem

The master theorem
Suppose we have a recurrence of the following form:

T (n) =

d if n = 1

aT
( n

b
)
+ nc otherwise

Then...

I If logb(a) < c, then T (n) ∈ Θ(nc)

I If logb(a) = c, then T (n) ∈ Θ(nc log(n))
I If logb(a) > c, then T (n) ∈ Θ

(
nlogb(a)

)
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The master theorem

Given:

T (n) =

d
aT
( n

b
)
+ nc

Then...
If logb(a) < c, then T (n) ∈ Θ(nc)

If logb(a) = c, then T (n) ∈ Θ(nc log(n))
If logb(a) > c, then T (n) ∈ Θ

(
nlogb(a)

)

Sanity check: try checking merge sort.

We have a = 2, b = 2, and c = 1. We know
logb(a) = log2(2) = 1 = c, therefore merge sort is Θ(n log(n)).

Sanity check: try checking S(n) = 2S(n/3) + n2.

We have a = 2, b = 3, and c = 2. We know log3(2) ≤ 1 < 2 = c,
therefore S(n) ∈ Θ

(
n2
)
.
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The master theorem: intuition

Intuition, the logb(a) < c case:

1. We do work more rapidly then we divide.
2. So, more of the work happens near the “top”, which means

that the nc term dominates.
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The master theorem: intuition

Intuition, the logb(a) > c case:

1. We divide more rapidly then we do work.
2. So, most of the work happens near the “bottom”, which

means the work done in the leaves dominates.
3. Note: Work in leaves is about

d · aheight = d · alogb(n) = d · nlogb(a).
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The master theorem: intuition

Intuition, the logb(a) = c case:

1. Work is done roughly equally throughout tree.
2. Each level does about the same amount of work, so we

approximate by just multiplying work done on first level by the
height: nc logb(n).
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