chniqu

Divide-

onquer

Divide-and-conquer is a useful technique for solving many kinds of
problems. It consists of the following steps
CSE 373: More sorts, tree method, the

1. Divide your work up into smaller pieces (recursively)
2. Conquer the individual pieces (as base cases)
master method 3. Combine the results together (recursively)

Example template

algorithacinput)
Michael Lee 5 Comai enouen) (
COUGUER, solve, and return input
Wednesday, Feb 7, 2018 else

OIVIDE i

nto multiple pieces
RSE on sach piece
COMBINE and return results

Merge sort: Core pieces

Divide: Split array roughly into half

Merge sort: Summary
Unsorted

Core idea: split array in half, sort each half, merge back together
If the array has size 0 or 1, just return it unchanged
Unsorted Unsorted

Pseudocode
Conquer: Return array when length <

| i

e {
snallertalf = sort(input(0
Largertalf = sort (inputCaid + |
return serge(snallertalr, largertolr)

aid
Combine: Combine two sorted arrays using merge
Sorted Sorted

Sorted

Merge sort: Example Merge sort: Example

Merge sort: Example

Merge sort: Example

RN

6 |2 [u]

s | [2]u]

=

[e]wol7T2]

6 |2 [u]

s | [2]un]

=

[s]w] [7]2]

=

[e]ul7T2]

e

[s]w] [7]2]

Merge sort: Example

Merge sort: Example

[3Ts] [2]u]

[sTw] [2]7]

et

Merge sort: Example

Merge sort: Example

5] 215

36 [u]

(o] [2]7]

s | [2]u]

[z

[2]s[7]w]

B

[sae] [2]7]

Merge sort: Analysi Merge sort: Analysis

Pseudocode
sort(input) ¢
if Cinput D¢ Best and worst case
e We always subdivide the array in half on each recursive call, and

Largerdalf = sort(inputmi

@l merge takes O (n) time to run. So, the best and worst case
return serge(anallerkalf, largertalr)

runtime is the same:

1 ifn<l
T(n) =
27(n/2) +n otherwi
Best case runtime? Worst case runtime? T(n/2)+n otherwise

Spoiler alert: this is © (nlog(n))

Merge sort: Analysis Quick sort: Divide step

Stal

ity and In-place

If we implement the nerge function correctly, merge sort will be
stable

However, nerge must construct a new array to contain the output
S0 merge sort is not in-place.

Numbers > pivot

Quick sort: Core pieces Quick sort: Summary

ivide: Pick a pivot, partition into groups

Core idea: Pick some item from the array and call it the pivot.

] Unsorted Put all items smaller in the pivot into one group and all items
— N, larger in the other and recursively sort. If the array has size 0 or 1,
<P >P (1 (e e
Conquer: Return array when length < 1 Pseudocode
sort(inpat) (
if Cirpue «
! a)
snallerHalf = sort(getSealler (pivot, input)),
Combine sorted portions and the pivot Torgerkalf - sort(gecBigger pivot, inu

~.

Sorted

Quick sort: Example Quick sort: Example

Quick sort: Example Quick sort: Example

Quick sort: Example

Quick sort: Example Quick sort: Example

[«]
] E[e[==]n]

<]
\i‘
2]
E
=]
2]
E

E
2}
E
[e—]

Quick sort: Analysis Quick sort: Analysis

Pseudocode

4 Cirput.tengen <
edse Best case analysis
e ——
el i e e In the best case, we always pick the median element
Largerial = sort(getBigge pivo. input))
return saallervalf + pivar + Iargerhair AT 4n Fan1
1

T(n) =
otherwise

Best case runtime? Worst case runtime? (Spoiler alert: this is © (nlog(n))

Quick sort: Analysis Quick sort: Analysis

Best case analysis
In the best case, we always pick the median element, so the
best-case runtime is © (nlog(n)).

Worst case analysis
In the worst case, we always end up picking the minimum or

maximum element.
Worst case analysis

T(—1)+n ifa>1 In the worst case, we always end up picking the minimum or

T(n) maximum element, so, the worst-case runtime is © (n2)
1 otherwise

Average case runtime
So, the worst-case runtime is © (n?) Usually, we'll pick a random element, which makes the runtime.
O (nlog(n)).

Quick sort: Analysis

Unresolved questions

How do we pick a pivot?
Quick sort is not stable — our partition step ends up disregarding
and sometimes ignoring the existing relative ordering of duplicate

> Worst case? Pick the
elements.

nimum or the maximum. The work

will shrink by only 1 on each recursive call.

> Ideally? Pick the med
recursive call

Quick sort is in-place — see next few slides for details!

The work will split in half on each
In-place?

How do we partition?

Quick sort: Picking a pivot Quick sort: Picking a pivot

How do we find the median? Other ideas:

> i ndom el
> Idea: pick the first item in the array {53 ik s random cement
SR > On average, guaranteed to do well - no easy worst case
roblem: what if the array is already sorted? > Random number generation can sometimes be
> (Real world data ofen s partallysoted) vl
> But hey, it's speedy (O (1)) e
> i nedian of first, middle, an
» Idea: try finding it by looping through the array Mia ;‘(k " "e‘d‘a f” o M‘e i
> Problem: hard to implement, and expensive (O (n)) e e e

but works well in practice, and is eficient
These seem like bad ideas :(

These seem like good ideas :)

Quick sort: Unresolved questions Quick sort: Partitioning (using median-of-three pivot)

Find the 1o, med, and hi

[e[aTeTofo]s s 27]¢]

How do we partition?

Quick sort: Partitioning (using median-of-three pivot) Quick sort: Partitioning (using median-of-three pivot)

Find the 1o, med, and hi Find the 1o, med, and hi
[s[xfefofoss2]7]5] [s[xfefofoss2]7]¢]
Find the median of the three and suap with front Find the median of the three and suap with front

o[ss2]7]s] o[ss2]7]¢]

Final result: pivot is now at index 0

(e T o R I e

Quick sort: Partitioning (using median-of-three pivot) Quick sort: Partitioning (using median-of-three pivot)

Array after moving pivot: Array after moving pivot:
[e[aleTofolaTsTz]7]z] [e[alefofolaTsTz]7]5]
Partitioning: Partitioning:
[e[afefofolaTs]2]7]e] (e «TeTolsTs =17 N

1) 1)

low high low high

1<6 8>6 156 7>6

E E

Quick sort: Partitioning (using median-of-three pivot) Quick sort: Partitioning (using median-of-three pivot)

Array after moving pivor: Array after moving pivot
RN T A) A | RN 0 S B B |
Partitioning: Partitioning:

| ENNENEEN L ENENEEN
1) 1

low high low EWaH high

9<6 256 9<6 256

Quick sort: Partitioning (using median-of-three pivot) Quick sort: Partitioning (using median-of-three pivot)

Array after moving pivot Array after moving pivot
[elaeJofo]aTs]2]7]5] [e]aeTofo]aTs]2]7]5]
Partitioning: Partitioning:

(e [T 2To s 5] [« [T o[[]
1))

low high low high

2<6 9>6 0<6 5>6

Quick sort: Partitioning (using median-of-three pivot) Quick sort: Partitioning (using median-of-three pivot)
Array after moving pivot: Array after moving pivot:
[e[aleTofolaTsTz]7]z] [e[alefofolaTsTz]7]5]
Partitioning: Partitioning:

(e [Ar[Eeiraion = [| [« [iota - |
\

low high low high
356 556

5<6 5>6

Quick sort: Partitioning (using median-of-three pivot) Quick sort: Partitioning (using median-of-three pivot)

Array after moving pivor: Array after moving pivot:
RN T A) A | RN 0 S B B |
Partitioning: Partitioning:

high low SWAP high low
556 9<6 556 9<6

Quick sort: Core pieces revisited

Divide: Pick a pivot, partition in-place into groups

Unsjned [F]

Array after moving pivot
<P [p] >P

Quick sort: Partitioning (using median-of-three pivot)

[e[1TeTofolaTsTz]7]5]
Conquer: When subarray is length < 1, do nothing

Partitioning;
RSN .
Combine: Do nothing; already done!
Unsorted < 6 Unsorted > 6 <r [F | >0
B EENE] P 3

We could try unfolding, but it's annoying:

Analyzing recurrences, part 2 Analyzing recurrences, part 2

T(n)

So, merge sort and quick sort are both

1 ifn<l
T(n
2T(n/2) +n otherwise

I claim T(n) € © (nlog(n)). How can we show this?

Step 1 Start with the function, let n be the input value

The tree method: overview The tree method: example

Core idea:
1. Draw what the work looks like visually, as a tree
2. Use the visualization to help us analyze the overall behavior
3. Either find the closed form, or construct a summation that we

an simplify to get the closed form

The tree method: example

Step 2: Replace with definition

The tree method: example

Step 3: Stick each recursive call into a subtree

The tree method: example

Step 4: Replace with definition

TEH+T@ 3| [TO+TH+3

The tree method: example

Repeat step 3 (move recursive call to subrees)

The tree method: example

Repeat step 4 (replace recursive call wiith definition)

ECER

‘,m"

r@+s

‘zTr%H

The tree method: example

Repeat.

The tree method: example The tree method: analysis

Now, let's add everything up!

Final step: how much work does each base case do? How much work is done per level?
n n work
. / \ 2 el
SN SN
VAN ANVAN
n work
MMM AN
» Height is roughly log,(n), so total work is about nlog,(n). .

The tree method: practice The tree method: practice

Final step: how much work does each base case do?

Consider the following recurrence:

2 ifn<1
S(n) =
25(n/3) + n? otherwise

Draw a tree to help you visualize the work done.

Now what?

The tree method: precise analysis The tree method: precise analysis

Problem: Necd a rigorous way of getting a closed form " e et
We want to answer a few core questions: I / \ a 2 nodes, 2 work per
How much work does each recursive level do? 7/ \ 7/ \ .
1. How many nodes are there on level 17 (i = 0 is “root” level) /%\ /A‘\ ’,%\ /A‘\ e s
2. At some level 7, how much work does a single node do? Sy M
(Ignoring subtrees)

How much work does the leaf level (base cases) do? numNodes(i)

workPerNode(n, /)

1. How much work does a single leaf node do? rer
numLevels(n) =

jow many leaf nodes are there?

2 pliTsaRt: workPerLeafNode(n) —

numLeafNodes(n) ? s

The tree method: precise analysis

How many levels are there, exactly? Is it log,(n)?

Let's try an example. Suppose we have T(4). What happens?
4
VAN
2 2
N
111

Height is log

For this recursive function, num recursive levels is same as height
Important: total levels, counting base case, is height + 1

Important: for other recursive functions, where base case doesn't
3%

The tree method: precise analysis

We discovered:

1. numNodes(i) 2
2. workPerNode(n, /) = £
3. numevels(n)

4. workPerLeafNode(n)
5. numleafNodes(n)

umLeves(n) _ glog(n) _

Our formulas
numLeveis(n)
recursiveWork =

baseCaseWork = numLeafNodes(n) - workPerLeafNode(n)

numNodes() - workPerNode(n, /)

totalWork = recursiveWork -+ baseCaseWork

happen at n < 1, num recursive levels might be different then 7
height
The tree method: precise analysis The tree
Solve for recursive case:
recursiveWork 5
Practice: Let's go back to our old recurrence.
2 ifn<1
= nlogy(n) S = =
25(n/3) + i otherwise
Solve for base case:
baseCaseWork = numLeafNodes(n) - workDonePerL.eafNode(n)
nl=n
So exact closed form is nlog,(n) +
® »

1 node, n? work per

2 nodes, £ work per

4 nodes, £ work per

2 nodes, £ work per

odes, 1 vrk per

numNodes(i) =
workPerNode(n, /) =

workPerLeafNode(n) = 2

1
2
3. numLevel
4
5. numLeafNodes(n) =

pumLeveis(n) _ glog(n) _ o

The tree method: practice

numNodes() 2
workPerNode(n,) = &
= logy(n)
workPerLeafNode(n) = 2

1
2
3. numLevels(n)
4
5. _ grumLevels(n) _

numLeafNodes(n)

Combine into a single expression representing the total runtime.

o
”
totalWork = (S

o

4 2R

-y (%) +2008)

Applying the finite geometric series

g () (5) T With a bunch of effort.
5) "

We have: n? "

totalWork = oosa2)

The finite geometric series identity: >

Plug and chug:

totalWork = n) + 20085(2)
r D) o
!

The master theorem The master theorem

The master theorem
Suppose we have a recurrence of the following form:

Is there an easier way?
ifn=1
T(n) =

T (3)+n° otherwise
If we want to find an exact closed form, no. Must use either the
unfolding technique or the tree technique. Then
> Iflogy(a) < c, then T(n) € © (n%)
If we want to find a big-© bound, yes. > Iflogy(a) = ¢, then T(n) € © (" log(n))
> Iflogy(a) > ¢, then T(n) € © (n%:(%))

The master theorem The master theorem

Given Then

5(3) < c. then T(n) € © (n°)
T(n) {d If logy (a) = ¢, then T(n) € © (n°log(n))

aT (8)+1° Iflogy(a) > c, then T(n) € © (no%(2)

Intuition, the log,(a) < ¢ case:

Sanity check: try checking merge sort.
Y Y 8 mers 1. We do work more rapidly then we divide.

We have a =2, b=
log,(a) = loga(2) = 1 = c, therefore merge sort is © (nlog(n)).

. and ¢ = 1. We know
2. So, more of the work happens near the “top”, which means
that the n® term dominates.

Sanity check: try checking S(n) = 25(n/3) + .

We have a =2, b
therefore S(n) € © (n

and ¢ = 2. We know logy(2) < 1 <

The master theorem: intuition The master theorem: intuition

Intuition, the log,(a) > ¢ case: .
Intuition, the log, (2,

c case:

1. We divide more rapidly then we do work
1. Work is done roughly equally throughout tree
2. So, most of the work happens near the “bottom”, which
2. Each level does about the same amount of work, 5o we
means the work done in the leaves dominates.
approximate by just multiplying work done on first level by the
3. Note: Work in leaves is about

height: n¢log,(n)
- M . o) — g . ploss(a) =BEE v

