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Warmup

Warmup:
Insert the following letters into an empty binary min-heap. Draw
the heap’s internal state in both tree and array form:

c, b, a, a, a, c

In tree form

a

a

c a

b

c

In array form

a
0

a
1

b

2

c
3

a
4

c
5 6 7
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The array-based representation of binary heaps

Take a tree:

A

B

D

H I

E

J K

C

F

L

G

How do we find parent?

parent(i) =
⌊

i − 1

2

⌋
The left child?

leftChild(i) = 2i + 1

The right child?

leftChild(i) = 2i + 2

And fill an array in the level-order of the tree:

A

0

B

1

C

2

D

3

E

4

F

5

G

6

H

7

I

8

J

9

K

10

L

11 12 13 14
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Finding the last node

If our tree is represented using an array, what’s the time needed to
find the last node now?

Θ(1): just use this.array[this.size - 1].

...assuming array has no ’gaps’. (Hey, it looks like the structure
invariant was useful after all)
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Re-analyzing insert

How does this change runtime of insert?

Runtime of insert:

findLastNodeTime+addNodeToLastTime+numSwaps×swapTime

...which is:
1 + 1 + numSwaps × 1

Observation: when percolating, we usually need to percolate up a
few times! So, numSwaps ≈ 1 in the average case, and
numSwaps ≈ height = log(n) in the worst case!
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Re-analyzing removeMin

How does this change runtime of removeMin?

Runtime of removeMin:

findLastNodeTime + removeRootTime + numSwaps × swapTime

...which is:
1 + 1 + numSwaps × 1

Observation: unfortunately, in practice, usually must percolate all
the way down. So numSwaps ≈ height ≈ log(n) on average.
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Project 2

Deadlines:

I Partner selection: Fri, Feb 9
I Part 1: Fri, Feb 16
I Parts 2 and 3: Fri, Feb 23

Make sure to...

I Find a different partner for project 3
I ...or email me and petition to keep your current partner

7



Grades

Some stats about the midterm:

I Mean and median ≈ 80 (out of 100)
I Standard deviation ≈ 13
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Grades

Common questions:

I I want to know how to do better next time
Feel free to schedule an appointment with me.

I How will final grades be curved?
Not sure yet.

I I want a midterm regrade.
Wait a day, then email me.

I I want a regrade on a project or written homework
Fill out regrade request form on course website.
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An interesting extension

We discussed how to implement insert, where we insert one
element into the heap.

What if we want to insert n different elements into the heap?
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An interesting extension

Idea 1: just call insert n times – total runtime of Θ(n log(n))

Can we do better?

Yes! Possible to do in Θ(n) time, using “Floyd’s buildHeap

algorithm”.
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Floyd’s buildHeap algorithm

The basic idea:

I Start with an array of all n elements
I Start traversing backwards – e.g. from the bottom of the tree

to the top
I Call percolateDown(...) per each node
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Floyd’s buildheap algorithm: example

A visualization:
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Floyd’s buildheap algorithm

Wait... isn’t this still n log(n)?

We look at n nodes, and we run percolateDown(...) on each
node, which takes log(n) time... right?

Yes – algorithm is O (n log(n)), but with a more careful analysis,
we can show it’s O (n)!
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Analyzing Floyd’s buildheap algorithm

Question: How much work is percolateDown actually doing?

(1 node) × (4 work)

(2 nodes) × (3 work)

(4 nodes) × (2 work)

(8 nodes) × (1 work)

What’s the pattern?

work(n) ≈ n
2
· 1 + n

4
· 2 + n

8
· 3 + · · ·

15
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Analyzing Floyd’s buildheap algorithm

We had:
work(n) ≈ n

2
· 1 + n

4
· 2 + n

8
· 3 + · · ·

Let’s rewrite bottom as powers of two, and factor out the n:

work(n) ≈ n
(

1

21
+

2

22
+

3

23
+ · · ·

)
Can we write this in summation form? Yes.

work(n) ≈ n
?∑

i=1

i
2i

What is ? supposed to be?

It’s the height of the tree: so log(n).
(Seems hard to analyze...) So let’s just make it infinity!

work(n) ≈ n
?∑

i=1

i
2i ≤ n

∞∑
i=1

i
2i

16
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Analyzing Floyd’s buildheap algorithm

Strategy: prove the summation is upper-bounded by something
even when the summation goes on for infinity.

If we can do this, then our original summation must definitely be
upper-bounded by the same thing.

work(n) ≈ n
?∑

i=1

i
2i ≤ n

∞∑
i=1

i
2i

Using an identity (see page 4 of Weiss):

work(n) ≤ n
∞∑

i=1

i
2i = n · 2

So buildHeap runs in O (n) time!
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Analyzing Floyd’s buildheap algorithm

Lessons learned:

I Most of the nodes near leaves (almost 1
2 of nodes are leaves!)

So design an algorithm that does less work closer to ‘bottom’

I More careful analysis can reveal tighter bounds
I Strategy: rather then trying to show a ≤ b directly, it can

sometimes be simpler to show a ≤ t then t ≤ b.
(Similar to what we did when finding c and n0 questions when
doing asymptotic analysis!)
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Analyzing Floyd’s buildheap algorithm

What we’re skipping

I How do we merge two heaps together?

I Other kinds of heaps (leftist heaps, skew heaps, binomial
queues)
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On to sorting

And now on to sorting...

20



Why study sorting?

Why not just use Collections.sort(...)?

I You should just use Collections.sort(...)

I A vehicle for talking about a technique called
“divide-and-conquer”

I Different sorts have different purposes/tradeoffs.
(General purpose sorts work well most of the time, but you
might need something more efficient in niche cases)

I It’s a “thing everybody knows”.
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Types of sorts

Two different kinds of sorts:
Comparison sorts
Works by comparing two elements at a time.

Assumes elements in list form a consistent, total ordering:

Formally: for every element a, b, and c in the list, the following
must be true.

I If a ≤ b and b ≤ a then a = b
I If a ≤ b and b ≤ c then a ≤ c
I Either a ≤ b is true, or b ≤ a is true (or both)

Less formally: the compareTo(...) method can’t be broken.

Fact: comparison sorts will run in O (n log(n)) time at best.
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Types of sorts

Two different kinds of sorts:
Niche sorts (aka “linear sorts”)
Exploits certain properties about the items in the list to reach
faster runtimes (typically, O (n) time).

Faster, but less general-purpose.

We’ll focus on comparison sorts, will cover a few linear sorts if
time.
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More definitions

In-place sort
A sorting algorithm is in-place if it requires only O(1) extra
space to sort the array.

I Usually modifies input array
I Can be useful: lets us minimize memory

24



More definitions

Stable sort
A sorting algorithm is stable if any equal items remain in the
same relative order before and after the sort.

I Observation: We sometimes want to sort on some, but not all
attribute of an item

I Items that ’compare’ the same might not be exact duplicates
I Sometimes useful to sort on one attribute first, then another

25



Stable sort: Example

Input:

I Array: [(8, "fox"), (9, "dog"), (4, "wolf"), (8, "cow")]

I Compare function: compare pairs by number only

Output; stable sort:

[(4, "wolf"), (8, "fox"), (8, "cow"), (9, "dog")]

Output; unstable sort:

[(4, "wolf"), (8, "cow"), (8, "fox"), (9, "dog")]
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Overview of sorting algorithms

There are many sorts...
Quicksort, Merge sort, In-place merge sort, Heap sort, Insertion
sort, Intro sort, Selection sort, Timsort, Cubesort, Shell sort,
Bubble sort, Binary tree sort, Cycle sort, Library sort, Patience
sorting, Smoothsort, Strand sort, Tournament sort, Cocktail sort,
Comb sort, Gnome sort, Block sort, Stackoverflow sort, Odd-even
sort, Pigeonhole sort, Bucket sort, Counting sort, Radix sort,
Spreadsort, Burstsort, Flashsort, Postman sort, Bead sort, Simple
pancake sort, Spaghetti sort, Sorting network, Bitonic sort,
Bogosort, Stooge sort, Insertion sort, Slow sort, Rainbow sort...

...we’ll focus on a few
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Insertion Sort

2
a[0]

3
a[1]

6
a[2]

7
a[3]

8
a[4]

5
a[5]

1
a[6]

4
a[7]

10
a[8]

2
a[9]

8
a[10]

Already sorted Unsorted

Current item

INSERT current item into sorted region

2
a[0]

3
a[1]

5
a[2]

6
a[3]

7
a[4]

8
a[5]

1
a[6]

4
a[7]

10
a[8]

2
a[9]

8
a[10]

2
a[0]

3
a[1]

5
a[2]

6
a[3]

7
a[4]

8
a[5]

1
a[6]

4
a[7]

10
a[8]

2
a[9]

8
a[10]

28



Insertion Sort

2
a[0]

3
a[1]

6
a[2]

7
a[3]

8
a[4]

5
a[5]

1
a[6]

4
a[7]

10
a[8]

2
a[9]

8
a[10]

Already sorted Unsorted

Current item

INSERT current item into sorted region

2
a[0]

3
a[1]

5
a[2]

6
a[3]

7
a[4]

8
a[5]

1
a[6]

4
a[7]

10
a[8]

2
a[9]

8
a[10]

2
a[0]

3
a[1]

5
a[2]

6
a[3]

7
a[4]

8
a[5]

1
a[6]

4
a[7]

10
a[8]

2
a[9]

8
a[10]

28



Insertion Sort

2
a[0]

3
a[1]

6
a[2]

7
a[3]

8
a[4]

5
a[5]

1
a[6]

4
a[7]

10
a[8]

2
a[9]

8
a[10]

Already sorted Unsorted

Current item

INSERT current item into sorted region

2
a[0]

3
a[1]

5
a[2]

6
a[3]

7
a[4]

8
a[5]

1
a[6]

4
a[7]

10
a[8]

2
a[9]

8
a[10]

2
a[0]

3
a[1]

5
a[2]

6
a[3]

7
a[4]

8
a[5]

1
a[6]

4
a[7]

10
a[8]

2
a[9]

8
a[10]

28



Insertion Sort

2
a[0]

3
a[1]

6
a[2]

7
a[3]

8
a[4]

5
a[5]

1
a[6]

4
a[7]

10
a[8]

2
a[9]

8
a[10]

Already sorted Unsorted

Current item

INSERT current item into sorted region

2
a[0]

3
a[1]

5
a[2]

6
a[3]

7
a[4]

8
a[5]

1
a[6]

4
a[7]

10
a[8]

2
a[9]

8
a[10]

2
a[0]

3
a[1]

5
a[2]

6
a[3]

7
a[4]

8
a[5]

1
a[6]

4
a[7]

10
a[8]

2
a[9]

8
a[10]

28



Insertion Sort
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4
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8
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Already sorted Unsorted

INSERT current item into sorted region

Pseudocode

for (int i = 1; i < n; i++) {

// Find index to insert into

int newIndex = findPlace(i);

// Insert and shift nodes over

shift(newIndex, i);

}

I Worst case runtime?
I Best case runtime?
I Average runtime?
I Stable?
I In-place?
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Selection Sort
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Selection Sort

2
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10
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Already sorted Unsorted

SELECT next min and swap with current

Pseudocode

for (int i = 0; i < n; i++) {

// Find next smallest

int newIndex = findNextMin(i);

// Swap current and next smallest

swap(newIndex, i);

}

I Worst case runtime?
I Best case runtime?
I Average runtime?
I Stable?
I In-place?
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Heap sort

Can we use heaps to help us sort?

Idea: run buildHeap then call removeMin n times.

Pseudocode

E[] input = buildHeap(...);

E[] output = new E[n];

for (int i = 0; i < n; i++) {

output[i] = removeMin(input);

}

I Worst case runtime?
I Best case runtime?
I Average runtime?
I Stable?
I In-place?
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Heap Sort: In-place version

Can we do this in-place?

Idea: after calling removeMin, input array has one new space. Put
the removed item there.
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a[4]
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a[5]
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a[6]

14
a[7]

4
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2
a[9]

1
a[10]

Heap Sorted region

Pseudocode

E[] input = buildHeap(...);

for (int i = 0; i < n; i++) {

input[n - i - 1] = removeMin(input);

}
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Heap Sort: In-place version

Complication: when using in-place version, final
array is reversed!
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a[7]

4
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2
a[9]

1
a[10]

Heap Sorted region

Several possible fixes:

1. Run reverse afterwards (seems wasteful?)
2. Use a max heap
3. Reverse your compare function to emulate a max heap
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Technique: Divide-and-Conquer

Divide-and-conquer is a useful technique for solving many kinds of
problems. It consists of the following steps:

1. Divide your work up into smaller pieces (recursively)
2. Conquer the individual pieces (as base cases)
3. Combine the results together (recursively)

Example template

algorithm(input) {

if (small enough) {

CONQUER, solve, and return input

} else {

DIVIDE input into multiple pieces

RECURSE on each piece

COMBINE and return results

}

}

38
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COMBINE and return results

}

}
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Merge sort: Core pieces

Divide:

Split array roughly into half

Unsorted

Unsorted Unsorted

Conquer:

Return array when length ≤ 1

Combine:

Combine two sorted arrays using merge

Sorted Sorted

Sorted
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Merge sort: Summary

Core idea: split array in half, sort each half, merge back together.
If the array has size 0 or 1, just return it unchanged.

Pseudocode

sort(input) {

if (input.length < 2) {

return input;

} else {

smallerHalf = sort(input[0, ..., mid]);

largerHalf = sort(input[mid + 1, ...]);

return merge(smallerHalf, largerHalf);

}

}
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Merge sort: Example
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Merge sort: Analysis

Pseudocode

sort(input) {

if (input.length < 2) {

return input;

} else {

smallerHalf = sort(input[0, ..., mid]);

largerHalf = sort(input[mid + 1, ...]);

return merge(smallerHalf, largerHalf);

}

}

Best case runtime? Worst case runtime?
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Merge sort: Analysis

Best and worst case

We always subdivide the array in half on each recursive call, and
merge takes O (n) time to run. So, the best and worst case
runtime is the same:

T (n) =

1 if n ≤ 1

2T (n/2) + n otherwise

But how do we solve this recurrence?
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Analyzing recurrences, part 2

We have: T (n) =

1 if n ≤ 1

2T (n/2) + n otherwise

Problem: Unfolding technique is a major pain to do

Next time: Two new techniques:

I Tree method: requires a little work, but more general purpose
I Master method: very easy, but not as general purpose
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