# **CSE 373:** Binary heaps

Michael Lee

Monday, Feb 5, 2018

#### Course overview

The course so far...

- ► Reviewing manipulating arrays and nodes
- ► Algorithm analysis
- ► Dictionaries (tree-based and hash-based)

#### Course overview

#### The course so far...

- ► Reviewing manipulating arrays and nodes
- ► Algorithm analysis
- ▶ Dictionaries (tree-based and hash-based)

#### Coming up next:

- ► Divide-and-conquer, sorting
- ▶ Graphs
- ► Misc topics (P vs NP, more?)

When are we getting project grades/our midterm back?

When are we getting project grades/our midterm back?

**Tuesday or Wednesday** 

Do we have something due soon?

► Project 3 will be released today or tomorrow

- ► Project 3 will be released today or tomorrow
- ▶ Due dates:
  - ► Part 1 due in two weeks (Fri, Feb 16)
  - ► Full project due in three weeks (Fri, Feb 23)

- ► Project 3 will be released today or tomorrow
- ▶ Due dates:
  - ► Part 1 due in two weeks (Fri, Feb 16)
  - ► Full project due in three weeks (Fri, Feb 23)
- ► Partner selection
  - Selection form due Fri, Feb 9

- ► Project 3 will be released today or tomorrow
- ▶ Due dates:
  - ► Part 1 due in two weeks (Fri, Feb 16)
  - ► Full project due in three weeks (Fri, Feb 23)
- ▶ Partner selection
  - ► Selection form due Fri, Feb 9
  - ► You MUST find a new partner...

- ► Project 3 will be released today or tomorrow
- ▶ Due dates:
  - ► Part 1 due in two weeks (Fri, Feb 16)
  - ► Full project due in three weeks (Fri, Feb 23)
- ► Partner selection
  - ► Selection form due Fri, Feb 9
  - ► You **MUST** find a new partner...
  - ...unless both partners email me and petition to stay together

### **Today**

# Motivating question:

Suppose we have a collection of "items".

We want to return whatever item has the smallest "priority".

Specifically, want to implement the **Priority Queue** ADT:

#### The Priority Queue ADT

A priority queue stores elements according to their "priority". It supports the following operations:

Specifically, want to implement the **Priority Queue** ADT:

#### The Priority Queue ADT

A priority queue stores elements according to their "priority". It supports the following operations:

- ▶ removeMin: return the element with the *smallest* priority
- ▶ peekMin: find (but do not return) the *smallest* element
- ▶ insert: add a new element to the priority queue

An alternative definition: instead of yielding the element with the largest priority, yield the one with the *largest* priority:

#### The Priority Queue ADT, alternative definition

A priority queue stores elements according to their "priority". It supports the following operations:

An alternative definition: instead of yielding the element with the largest priority, yield the one with the *largest* priority:

#### The Priority Queue ADT, alternative definition

A priority queue stores elements according to their "priority". It supports the following operations:

- ► removeMax: return the element with the *largest* priority
- ▶ peekMax: find (but do not return) the *largest* element
- ▶ insert: add a new element to the priority queue

The way we implement both is almost identical – we just tweak how we compare elements

In this class, we will focus on implementing a "min" priority queue

| Idea                 | removeMin | peekMin | insert |
|----------------------|-----------|---------|--------|
| Unsorted array list  |           |         |        |
| Unsorted linked list |           |         |        |
| Sorted array list    |           |         |        |
| Sorted linked list   |           |         |        |
| Binary tree          |           |         |        |
| AVL tree             |           |         |        |

Fill in this table with the worst-case runtimes:

| Idea                 | removeMin                       | peekMin                         | insert      |
|----------------------|---------------------------------|---------------------------------|-------------|
| Unsorted array list  | $\Theta\left(\mathbf{n}\right)$ | $\Theta\left(\mathbf{n}\right)$ | $\Theta(1)$ |
| Unsorted linked list | $\Theta(n)$                     | $\Theta(n)$                     | $\Theta(1)$ |
| Sorted array list    |                                 |                                 |             |
| Sorted linked list   |                                 |                                 |             |
| Binary tree          |                                 |                                 |             |
| AVL tree             |                                 |                                 |             |

8

| Idea                 | removeMin   | peekMin     | insert      |
|----------------------|-------------|-------------|-------------|
| Unsorted array list  |             |             |             |
| Unsorted linked list |             |             |             |
| Sorted array list    | $\Theta(1)$ | $\Theta(1)$ | $\Theta(n)$ |
| Sorted linked list   | $\Theta(1)$ | $\Theta(1)$ | $\Theta(n)$ |
| Binary tree          |             |             |             |
| AVL tree             |             |             |             |

| Idea                 | removeMin   | peekMin     | insert            |
|----------------------|-------------|-------------|-------------------|
| Unsorted array list  |             |             |                   |
| Unsorted linked list |             |             |                   |
| Sorted array list    |             |             |                   |
| Sorted linked list   |             |             |                   |
| Binary tree          | $\Theta(n)$ | $\Theta(n)$ | $\Theta(\log(n))$ |
| AVL tree             |             |             |                   |

| Idea                 | removeMin         | peekMin                      | insert                       |
|----------------------|-------------------|------------------------------|------------------------------|
| Unsorted array list  |                   |                              |                              |
| Unsorted linked list |                   |                              |                              |
| Sorted array list    |                   |                              |                              |
| Sorted linked list   |                   |                              |                              |
| Binary tree          |                   |                              |                              |
| AVL tree             | $\Theta(\log(n))$ | $\Theta\left(\log(n)\right)$ | $\Theta\left(\log(n)\right)$ |

We want something optimized both frequent inserts and removes.

An AVL tree (or some tree-ish thing) seems good enough... right?

We want something optimized both frequent inserts and removes.

An AVL tree (or some tree-ish thing) seems good enough... right?

Today: learn how to implement a binary heap.

peekMin is  $\mathcal{O}(1)$ , and insert and remove are still  $\mathcal{O}(\log(n))$  in the worst case.

However, insert is  $\mathcal{O}\left(1\right)$  in the average case!

Idea: adapt the tree-based method

Idea: adapt the tree-based method

**Insight:** in a tree, finding the min is expensive! Rather then

having it to the left, have it on the top!

Idea: adapt the tree-based method

**Insight:** in a tree, finding the min is expensive! Rather then having it to the left, have it on the top!

A BST or AVL tree



#### A binary heap



We now need to change our invariants...

#### Binary heap invariants

A binary heap has three invariants:

▶ Num children: Every node has at most 2 children

We now need to change our invariants...

#### Binary heap invariants

A binary heap has three invariants:

- ▶ Num children: Every node has at most 2 children
- ► **Heap:** Every node is smaller then its children

We now need to change our invariants...

#### Binary heap invariants

A binary heap has three invariants:

- ▶ Num children: Every node has at most 2 children
- ► **Heap:** Every node is smaller then its children
- ► **Structure:** Every heap is a "complete" tree it has no "gaps"

# Example of a heap

### A broken heap



# Example of a heap

### A fixed heap



# The heap invariant

Are these all heaps?





# Implementing peekMin

How do we implement peekMin?



# Implementing peekMin

How do we implement peekMin?



Easy: just return the root. Runtime:  $\Theta(1)$ .

# Implementing removeMin

What about removeMin?



# Implementing removeMin

What about removeMin?

Step 1: Just remove it!



What about removeMin?

Step 1: Just remove it!



**Problem:** Structure invariant is broken – the tree has a gap!

How do we fix the gap?



How do we fix the gap?

Step 2: Plug the gap by moving the last element to the top!



How do we fix the gap?

Step 2: Plug the gap by moving the last element to the top!



**Problem:** Heap invariant is broken – 11 is not smaller then 4 or 7!

How do we fix the heap invariant?



How do we fix the heap invariant?

Step 3: "percolate down" – keep swapping node with smallest child



How do we fix the heap invariant?

Step 3: "percolate down" – keep swapping node with smallest child



How do we fix the heap invariant?

Step 3: "percolate down" – keep swapping node with smallest child



And we're done!

#### **Practice**

Practice: What happens if we call removeMin?



#### **Practice**

Practice: What happens if we call removeMin?

After removing min:



# Analyzing removeMin

#### The percolateDown algorithm

```
percolateDown(node) {
    while (node.data is bigger then children) {
        swap data with smaller child
    }
}
```

# **Analyzing removeMin**

# The percolateDown algorithm percolateDown(node) { while (node.data is bigger then children) { swap data with smaller child } }

The runtime?

 $find Last Node Time + remove Root Time + num Swaps \times swap Time$ 

# Analyzing removeMin

#### The percolateDown algorithm

```
percolateDown(node) {
    while (node.data is bigger then children) {
        swap data with smaller child
    }
}
```

The runtime?

 $find Last Node Time + remove Root Time + num Swaps \times swap Time$ 

This ends up being:

$$n + 1 + \log(n) \cdot 1$$

...which is in  $\Theta(n)$ .

What about insert? Suppose we insert 3 — what happens?



What about insert? Suppose we insert 3 — what happens?

Step 1: insert at last available node



What about insert? Suppose we insert 3 — what happens?

Step 1: insert at last available node



**Problem:** heap invariant broken! 7 is not smaller then 3!

How do we fix the heap invariant?



How do we fix the heap invariant?

Step 2: "percolate up" – keep swapping node with parent until heap invariant is fixed



How do we fix the heap invariant?

Step 2: "percolate up" – keep swapping node with parent until heap invariant is fixed



How do we fix the heap invariant?

Step 2: "percolate up" – keep swapping node with parent until heap invariant is fixed



All ok!

#### **Practice**

Practice: What happens if we insert 3?



#### **Practice**

Practice: What happens if we insert 3?

After inserting 3:



#### **Analyzing insert**

# The percolateUp algorithm

```
percolateUp(node) {
    while (node.data is smaller then parent) {
        swap data with parent
    }
}
```

#### **Analyzing insert**

```
The percolateUp algorithm

percolateUp(node) {
    while (node.data is smaller then parent) {
        swap data with parent
    }
}
```

The runtime?

 $find Last Node Time + add Node To Last Time + num Swaps \times swap Time$ 

## **Analyzing insert**

#### The percolateUp algorithm

```
percolateUp(node) {
    while (node.data is smaller then parent) {
        swap data with parent
    }
}
```

The runtime?

 $find Last Node Time + add Node To Last Time + num Swaps \times swap Time$ 

This ends up being:

$$n + 1 + \log(n) \cdot 1$$

...which is in  $\Theta(n)$ .

**Problem:** But wait! I promised worst-case  $\Theta\left(\log(n)\right)$  insert and average-case  $\Theta\left(1\right)$  insert.

This algorithm is  $\Theta(\log(n))$  in both the worst and average case!

**Problem:** But wait! I promised worst-case  $\Theta(\log(n))$  insert and average-case  $\Theta(1)$  insert.

This algorithm is  $\Theta(\log(n))$  in both the worst and average case!

**Why:** Finding and modifying the last node is slow: requires traversal!

Can we speed it up?

#### Remember this slide?

| Idea                 | removeMax                       | peekMax                      | insert            |
|----------------------|---------------------------------|------------------------------|-------------------|
| Unsorted array list  | $\Theta\left(\mathbf{n}\right)$ | $\Theta\left( n\right)$      | $\Theta(1)$       |
| Unsorted linked list | $\Theta(n)$                     | $\Theta(n)$                  | $\Theta(1)$       |
| Sorted array list    | $\Theta(1)$                     | $\Theta(1)$                  | $\Theta(n)$       |
| Sorted linked list   | $\Theta(1)$                     | $\Theta(1)$                  | $\Theta(n)$       |
| Binary tree          | $\Theta(n)$                     | $\Theta(n)$                  | $\Theta(\log(n))$ |
| AVL tree             | $\Theta\left(\log(n)\right)$    | $\Theta\left(\log(n)\right)$ | $\Theta(\log(n))$ |

#### **Observation:**

- ► Arrays let us find and append to the end quickly
- ▶ Trees let us have nice log(n) traversal behavior

#### **Observation:**

- Arrays let us find and append to the end quickly
- ▶ Trees let us have nice log(n) traversal behavior

The trick: Why pick one or the other? Let's do both!

# The array-based representation of binary heaps

#### Take a tree:



# The array-based representation of binary heaps

Take a tree:



And fill an array in the level-order of the tree:

|   |   |   |   |   |   |   |   |   |   |   |   | 12 | <br> |
|---|---|---|---|---|---|---|---|---|---|---|---|----|------|
| Α | В | С | D | Е | F | G | Н | I | J | K | L |    |      |

# The array-based representation of binary heaps

Take a tree:



How do we find parent?

$$parent(i) = \left\lfloor \frac{i-1}{2} \right\rfloor$$

The left child?

$$\mathsf{leftChild}(i) = 2i + 1$$

The right child?

$$\mathsf{leftChild}(i) = 2i + 2$$

And fill an array in the **level-order** of the tree:

| ( |   |   |   |   |   | 5 |   |   |   |   |   |   | <br> |  |
|---|---|---|---|---|---|---|---|---|---|---|---|---|------|--|
| 1 | 4 | В | С | D | Ε | F | G | Н | Ι | J | K | L |      |  |

#### Finding the last node

If our tree is represented using an array, what's the time needed to find the last node now?

## Finding the last node

If our tree is represented using an array, what's the time needed to find the last node now?

 $\Theta\left(1\right)$ : just use this.array[this.size - 1].

## Finding the last node

If our tree is represented using an array, what's the time needed to find the last node now?

 $\Theta\left(1\right)$ : just use this.array[this.size - 1].

...assuming array has no 'gaps'. (Hey, it looks like the structure invariant was useful after all)

#### Re-analyzing insert

How does this change runtime of insert?

#### Re-analyzing insert

How does this change runtime of insert?

Runtime of insert:

 $\texttt{findLastNodeTime} + \texttt{addNodeToLastTime} + \texttt{numSwaps} \times \texttt{swapTime}$ 

...which is:

$$1+1+\mathsf{numSwaps} \times 1$$

#### Re-analyzing insert

How does this change runtime of insert?

Runtime of insert:

 $\texttt{findLastNodeTime} + \texttt{addNodeToLastTime} + \texttt{numSwaps} \times \texttt{swapTime}$ 

...which is:

$$1+1+\mathsf{numSwaps} \times 1$$

**Observation:** when percolating, we usually need to percolate up a few times! So, numSwaps  $\approx 1$  in the average case, and numSwaps  $\approx$  height  $= \log(n)$  in the worst case!

# Re-analyzing removeMin

How does this change runtime of removeMin?

#### Re-analyzing removeMin

How does this change runtime of removeMin?

Runtime of removeMin:

 $find Last Node Time + remove Root Time + num Swaps \times swap Time$ 

...which is:

$$1+1+\mathsf{numSwaps} \times 1$$

#### Re-analyzing removeMin

How does this change runtime of removeMin?

Runtime of removeMin:

 $find Last Node Time + remove Root Time + num Swaps \times swap Time$ 

...which is:

$$1+1+\mathsf{numSwaps} \times 1$$

**Observation:** unfortunately, in practice, usually must percolate all the way down. So numSwaps  $\approx$  height  $\approx \log(n)$  on average.